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CATEGORY-THEORETIC APPROACH TO SOFTWARE SYSTEMS DESIGN

S. P. Kovalyov UDC 519.68

Abstract. Category theory is applied to the problem of representing heterogeneous software engineering
technologies in a unified form suitable for their integration and coordination within the common software
systems engineering cycle. Special attention is paid to modern technologies such as model-driven engineering
and aspect-oriented programming. Universal category-theoretic semantic models of these technologies are
constructed. A novel method of separation of concerns by explicating the aspectual structure of formal
models of programs is proposed. We construct and analyze formal technologies (architecture schools) for
designing technologies that comprise a mathematical basis for model-driven engineering.

Introduction

Automation of technical products design and manufacturing processes is duly considered the major
way to improve the quality of products and efficiency of the labor of engineers. In the materials industry,
automatic machines and 3D-printers routinely build products as instructed by digital files generated by
CAD (computer-aided design) tools. Modern tools are able to reduce engineering to creation, analysis,
and transformation of computer models, viz. simplified formal representations of products reflecting their
coarse-grained structure and basic properties. The main role is traditionally played by the geometric
and multiphysical models that allow virtual simulation of product behavior under diverse conditions, of
assembling composite products from parts of various technological procedures at the design stage.

Virtual simulation and automatic manufacturing can be very useful in software development as well.
Tools for modeling programs, analysis of models, and source code generation (CASE-tools, computer aided
software engineering) have been actively developed for over half a century. However, the effect of their
implementation is much smaller than from the effect of CAD-tools [34]. This is largely due to a special
intangible nature of software that unlike material products has no geometric or physical characteristics.
Software products are characterized by a wide set of specific indicators, often nonnumerical, difficult to
formalize, having different meaning depending on the subject domain of concerns intended to be resolved
by the product. Examples of such indicators are flexibility, stability, and correctness [19]. A large number
of diverse indicators lead to the emergence of many diverse program modeling languages and techniques,
impeding the creation of truly general-purpose CASE-tools. There exist object-oriented, structured,
scenario-based, automata, algebraic, logical, denotational, and many other kinds of program models.

A novel approach to automate software engineering processes called MDE (model-driven engineering)
was proposed in the mid-2000’s in order to efficiently support such diversity of models in the software
systems engineering cycle [33]. This approach offers to facilitate modeling by creating various formalized
DSLs (domain-specific languages). Languages are constructed by specialization at the level of metamodels
from general-purpose language such as the object-oriented modeling language UML (Unified Modeling
Language) [15], real-time languages [5], logical inference languages [37], and so on. Instruments are
provided to create automatic tools for creating, analyzing, assembling, and transforming models, including
the source code generation. A large set of instruments and tools have been created and published in the
open source Eclipse Modeling Project [9].

However, MDE technologies appear to be poorly scalable: labor costs associated with their use too
quickly increase with the size and structural complexity of software systems [23]. Particular difficulties
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during systems development are associated with the coordination of consistent modifications in numer-
ous interrelated models responsible for different parts or aspects of the system and written in different
languages [20]. The consistency conditions are detected by tracing stakeholder concerns (requirements),
viz. tracking their implementation in diverse models and programs. The more completely and detailedly
tracing is performed, the easier it is to locate modifications in response to newly occurring requirements
and to avoid side effects that can undermine compliance with other requirements. Tracing is known as
one of the most expensive operations in software engineering [2]. The major problem is that software de-
velopers are not accustomed to consider the ease of tracing a mandatory quality criterion of results they
produce [21]. Commonly used languages, technologies, and styles of software design and programming
allow leaving the purpose of fragments of models and programs “implicit,” freeing authors from having to
meticulously record the traceability links. A known exception is AOP (aspect-oriented programming) [22],
which supports automatic tracing of auxiliary programmatic concerns such as logging system operation,
security, and so on. Pieces of code that implement such concerns are scattered across modular architecture
units and tangled with software implementation of the primary tasks that are localized in the modules.
AOP technologies allow shaping such crosscutting concerns as so-called aspects, viz. special independent
program units that are automatically embedded into the modules at explicitly specified points providing
traceability “by construction.”

Of great interest is application of AOP in MDE technologies because during the development of models
involving an aspect-oriented approach, detailed traceability links emerge [16]. However, such application
is hindered by lack of an AOP conceptual basis whose implementations are tied to particular program
composition and modeling technologies [36]. It is unclear how to extend an arbitrary software systems
design technology of MDE flavor by efficient techniques to create models of aspects and embed them into
models of modules.

A more general relevant problem is that of representing various software engineering technologies in
unified form convenient for integrating and coordinating them within the common design cycle of complex
heterogeneous systems. The choice of mathematical tools for modeling and analysis of software engineering
processes with a sufficient level of rigor plays an important role in solving this problem. The traditional
approach to the mathematical modeling by means of differential equations and minimizable functionals
developed in physics and other sciences does not help there due to an absence of suitable analogues for
variational principles, conservation laws, statistical regularities and the like [34]. An alternative approach
exists based on the observation that the history of assembling from certain primitive components is
available (or easily retrievable) for the majority of systems. If mathematical models of the components
and system development activities are known, then it is possible to calculate integral characteristics of
the system over formal analogues of assembly drawings or “megamodels,” viz. directed graphs (diagrams)
with nodes labeled by designations of the components and edges labeled by designations of activities.
Here one needs to generate and process graphs that are too large even to be depicted as a whole and
so could be described only by structural constraints. Powerful means for constructing and analyzing
graphs of this type have been developed within the framework of category theory, viz. a part of higher
algebra that “starts with the observation that many properties of mathematical systems can be unified
and simplified by a presentation with diagrams” [29, p. 1]. System units (components, subsystems,
systems, etc.) are represented by objects of suitable categories, activities are represented by morphisms,
and complex technological procedures are represented by diagrammatic constructions [7]. For structural
coordination of diverse procedures defined in different categories of such kind, suitable functors between
these categories are introduced.

For a comprehensive study of software systems engineering processes by means of category theory
a special general construction of a formal design technology (architecture school) was proposed [11]. In
the present paper, in the course of advance of the results of [26], constructions of this kind are treated
as objects of a category whose morphisms represent developing and transforming technologies including
the creation of domain-specific languages and modeling tools. In particular, enhancing a technology by
traceability and AOP techniques is formally described as its transformation that consists in equipping
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models with additional structure that represents labeling by concerns at the level of integration interfaces.
If the labeling can be “lifted” to the level of models themselves (explicated), then aspects that constitute
the model can be extracted from it as modular units by means of tracing, thus producing full separation
of concerns. Such an approach to the formalization of MDE and AOP is illustrated by examples from
a variety of software systems design technologies. Of course, many other formal approaches can be found
in the literature (see [8] and others) but they are presented in terms of specific theoretical computer
science formalisms (model checking, lambda calculus, etc.) and, therefore, can be used only in specific
technologies.

The paper is organized as follows. In Sec. 1, the notion of a formal technology is introduced. Section 2
is devoted to tracing concerns and transforming modular technologies into aspect-oriented ones. In Sec. 3,
constructions of aspect weaving and explication of aspectual structure are described. In Sec. 4, we
introduce and analyze formal technologies for design of formal technologies. In Sec. 5 the design of
domain-specific technologies with ample support for tracing is considered. We conclude with a summary
of results and directions for future research.

1. Category-Theoretic Description of Software Engineering

Definitions of category-theoretic concepts used in this paper can be found in [1,29]. Specifically, in [1]
objects and morphisms of a category C are concisely called C-objects and C-morphisms, respectively,
and a functor Δ: X → C is called a C-diagram with schema X (X is assumed to be a small category).
A diagram is considered as a graph of category X with nodes labeled by C-objects and edges labeled by
C-morphisms. The largest discrete subdiagram in Δ obtainable by removing all nonidentity X-morphisms
is denoted as |Δ| and its schema is denoted as |X|. All C-diagrams comprise the category DC (a covariant
“supercomma” category [29], viz. a Grothendieck flattening construction for the functor C− : X �→ CX)
in which a morphism of a diagram Δ: X → C to Ξ: Y → C is a pair 〈ε, fd〉 consisting of a functor
fd : X → Y and a natural transformation ε : Δ → Ξ ◦ fd. Every functor fun: C → D induces a functor

fun ◦ − : DC → DD

: Δ �→ fun ◦ Δ, 〈ε, fd〉 �→ 〈fun(ε), fd〉,
whence there exists an endofunctor

D : CAT → CAT

: C �→ DC, fun �→ (fun ◦ −),

where CAT denotes the category of all categories and all functors.
Let 1 be a terminal CAT-object which is a category consisting of a single object 0 and a single

morphism 10. A full embedding �−� : C ↪→ DC exists, which maps each C-object S to the diagram
�S� : 1 → C: 0 �→ S, which is called a dot. A DC-morphism with a dot as a codomain is called a cocone.
A colimit of a diagram Δ is a cocone denoted as colim Δ: Δ → �S� which is universal in the sense that for
every C-object T and cocone δ : Δ → �T� there exists a unique C-morphism w : S → T (colimit arrow)
such that δ = �w�◦ colim Δ. A colimit is unique up to an isomorphism provided that it exists: a cocone δ
is a colimit of a diagram Δ if and only if there exists a C-isomorphism i such that δ = �i� ◦ colim Δ.

Let Cdia be a class of C-diagrams each of which has a colimit. We can consider it as a full subcategory
of DC and define the colimit functor colim that acts from it to C by mapping each diagram from Cdia
to a vertex of its colimit and each DC-morphism θ : Δ → Ξ for some Δ, Ξ ∈ Cdia to a colimit arrow
colim(θ) that satisfies the condition colimΞ ◦ θ = �colim(θ)� ◦ colim Δ.

Δ
colim Δ� �colim(Δ)�

Ξ

θ

�
colim Ξ� �colim(Ξ)�

�colim(θ)�
�

........

816



www.manaraa.com

Colimits and other diagrammatic structures specified in the category DC are routinely sketched as
C-diagrams for illustrative purposes. For example, a cocone ν : Δ → �P� can be sketched by “adding” an
extra node P and arrows directed to it from every node of a sketch of a base diagram Δ. This technique
can be formalized and generalized as follows. First, a cocone is considered as an obvious DC-diagram with
schema 2 (recall that 2 denotes the category that consists of two objects 0, 1, their identity morphisms,
and a single nonidentity morphism 0 → 1). Next, every DC-diagram can be turned into a C-diagram
by the canonical natural drawing functor K : DDC → DC. The functor K acts on an arbitrary diagram
Γ: Z → DC by replacing each node A of a graph of schema Z by a graph of the C-diagram Γ(A) and each
edge f : A → B by a collection of edges, one per node I of a graph of the diagram Γ(A), directed from I to
the node fd(I) of a graph of the diagram Γ(B) and labeled by the C-morphism εI , where 〈ε, fd〉 = Γ(f).
A rigorous definition of the drawing functor is given in [17] and a triple 〈D, �−�,K〉 is proved there
to define a monad in CAT which has certain properties similar to powerset monad 〈2−, {−},∪〉 in the
category Set of all sets and all maps.
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For example, the result of “gluing” a cocone ν : Δ → �P� to a C-diagram Ξ that contains a node P can
be drawn as a C-diagram KΠ, where Π is a DC-diagram with schema 2 that represents a DC-morphism
π◦ν : Δ → Ξ with π : �P� ↪→ Ξ being an embedding. Note that if the diagram Ξ has a colimit, then gluing
a cocone leaves it intact (more rigorously: there exists a DC-morphism ρ : KΠ → Ξ such that colimKΠ =
(colim Ξ)◦ρ and ρ◦χ = 1Ξ, where χ : Ξ ↪→ KΠ is a canonical subdiagram embedding). We will also employ
a diagrammatic structure called a singular patch and defined as a drawing of a DC-diagram that consists
of a pair of arrows with common beginning ϕ : Φ ← �1� → Θ :θ, where 1 denotes a terminal C-object.
A colimit of a patch has the same vertex as a colimit of the C-diagram s : colim(Φ) ← 1 → colim(Θ) :t,
where �s� = (colim Φ) ◦ ϕ and �t� = (colim Θ) ◦ θ (provided that all these colimits exist).

We will consider how various functors act upon colimits. According to [1, Sec. 13], a functor
fun: C → D:

• preserves colimits of a diagram Δ if for every colimit δ : Δ → �S� cocone fun ◦ δ : fun ◦ Δ →
�fun(S)� is a colimit of the diagram fun ◦ Δ;

• lifts colimits of a diagram Δ if for every colimit ξ : fun◦Δ → �T� there exists a colimit δ : Δ → �S�
such that fun ◦ δ = ξ.

According to [26], a functor that preserves and lifts colimits of a diagram Δ is said to determine them
provided that Δ has a colimit. For example, a projection functor from a product of categories to each
component determines colimits of all diagrams that have them. The same is true for an injection functor
from each component to a sum of categories.

The category-theoretic approach to formalizing software engineering is steadily evolving, starting from
early 1970’s (see, e.g., [13]). Categories that are considered primarily have formal models of programs
as objects and formal descriptions of various activities of their integration as morphisms. Composition
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of morphisms represents execution of multi-step activities (processes), and identical morphisms represent
“doing nothing.” We will denote the category of this kind by c-DESC. We do not apply any restrictions
on it a priori, since there is no reason to exclude the possibility that any category describes some (maybe
not yet invented) software engineering technology.

Assembling systems is described by colimits of configurations, or formal “megamodels” [20] which are
c-DESC-diagrams that consist of components and their integration interrelations. For example, consider
connection of a component P with a system S, viz. a technique of assembling by adding an extra compo-
nent G called “glue” or connector [3] capable of being integrated both with a component and a system.
Connection is used in software design to integrate systems by means of a middleware which is employed
as a connector. A megamodel of the connection is represented by a pair of morphisms f : P ← G → S :g
denoted as Δ. A cocone over Δ is a commutative square which is determined by a vertex object V and
a pair of edge morphisms p : P → V ← S :s that satisfy the condition p ◦ f = s ◦ g. For a cocone to be
a colimit (and to be called a pushout) the following universal condition shall hold: for every object T and
a pair of morphisms u : P → T ← S :v that determine a cocone δ : Δ → �T� (i.e., satisfy the condition
u ◦ f = v ◦ g) there exists a unique morphism w : V → T such that w ◦ p = u and w ◦ s = v. This is
a specific instance of the condition δ = �w� ◦ colimΔ that holds by the definition of a colimit. It induces
a triangular Dc-DESC-diagram whose drawing is usually visualized as follows:

G
g � S

P

f

�
p � V

s

�

T

v

�

w

..................�u �
.

Clearly the object V represents the system assembled from S and P by connection via G (without
any extra components) provided that the pushout exists. Otherwise we gather that the glue G is unable
to connect the component P with S with activities f and g.

Concepts of an interface and a refinement need to be formalized in order to conduct comprehensive
studies of software systems engineering processes by means of category theory [11]. An interface is a part
of a component that is “seen” by a system during integration, such as a declaration of a web service
specified in the WSDL language. A refinement is a development step of an individual component, such
as an implementation of the web service’s specification by means of a programming language. Formal
models of interfaces comprise a category denoted SIG (since they are often referred to as signatures in
programming) and interface extraction is formalized as a functor sig : c-DESC → SIG. Clearly the func-
tor sig shall not be injective on objects since different models can have the same interface. However,
sig-images of two different activities of integrating the same component into the same system must be
different since otherwise interfaces happen to describe integrational capabilities of components with in-
appropriately low precision. It follows that the functor sig shall be faithful, viz. injective on each set
Mor(A, B), A, B ∈ Ob c-DESC. In addition, interfaces shall be implementable, i.e., a discrete interface
implementation functor sig∗ : SIG → c-DESC shall exist, such as sig ◦ sig∗ = 1SIG, and there exists a bi-
jection sig : Mor(sig∗(I), S) ∼= Mor

(
I, sig(S)

)
for each I ∈ Ob SIG, S ∈ Ob c-DESC (category theory

provides a concise wording of this requirement in terms of adjunction of functors). For example, discrete
implementation of a WSDL-declaration of a web-service consists of stubs (empty procedures) so it can be
automatically generated by CASE-tools and used for rapid building debug versions of applications.

Natural correlation between interfaces and configurations exists. Two c-DESC-diagrams that have the
same Dsig-image shall both either belong to the class Conf or not. This requirement states a kind of logical
noncontradiction law for interfaces: valid configurations shall be properly recognizable at interface level.
In addition, interface extraction shall be natural with respect to systems assembling in the “strong” sense
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that a colimit of Dsig-image of every configuration shall be Dsig-image of a colimit of the configuration
(i.e., the functor sig shall lift colimits of configurations). We will see later (Proposition 2) that this
property of the functor sig along with other properties imply naturality in a “weak” sense more customary
in category theory: the functor sig preserves colimits of configurations (in other words, Dsig-image of
a colimit of every configuration is a colimit of Dsig-image of the configuration). In summary, the functor
sig determines colimits of all configurations.

As far as refinements are concerned, they are described by morphisms in an appropriate category
denoted as r-DESC, which generally differs from c-DESC although it has the same class of objects and
contains all their isomorphisms from c-DESC. Refinements are required to be natural with respect to
systems assembling in the sense that every set of refinements of objects of every configuration shall induce
a refinement of a system assembled from it as a whole. This requirement can be formalized by means of
natural transformations consisting of r-DESC-morphisms since every discrete c-DESC-diagram is also an
r-DESC-diagram. An arbitrary set of refinements of objects of a diagram Δ: X → c-DESC is precisely
a natural transformation (an r-DESC|X|-morphism) of the discrete diagram |Δ| to discrete diagram Σ that
consists of all refinements results. If Δ ∈ Conf, then diagram Σ shall be contained in some configuration
whose colimit vertex can be obtained from colim(Δ) by a refinement.

Considerations above lead to the following complex structure suitable for formally exploring software
systems engineering processes from many different viewpoints [11].

Definition 1. Let c-DESC be a category whose objects are formal models of programs and morphisms
are formal descriptions of activities of integration of software systems. A formal design technology (archi-
tecture school) over c-DESC is a quadruple 〈c-DESC, Conf, sig, r-DESC〉, where:

• Conf is a class of c-DESC-diagrams, which are called valid configurations of systems;
• sig is a functor from c-DESC to a category denoted as SIG, whose objects are called interfaces or

signatures and morphisms are called formal descriptions of activities of integration of interfaces;
• r-DESC is a category, whose objects are formal models of programs and morphisms are called

formal descriptions of refinements
such that the following conditions hold.

(i) Every diagram from the class Conf has a colimit.
(ii) The functor sig is faithful.
(iii) The functor sig has a left adjoint denoted as sig∗ with an identity as the adjunction unit.
(iv) The functor sig lifts colimits of all diagrams from the class Conf.
(v) For any c-DESC-diagrams Δ and Ξ the conditions sig ◦ Δ = sig ◦ Ξ and Δ ∈ Conf imply that

Ξ ∈ Conf.
(vi) Ob r-DESC = Ob c-DESC.
(vii) The subcategory of c-DESC that consists of all c-DESC-objects and all isomorphisms is a sub-

category of r-DESC.
(viii) For every diagram Δ: X → c-DESC ∈ Conf and every natural transformation of the kind

ϕ : |Δ| → Σ ∈ Mor r-DESC|X| there exists a diagram Δ ⊕ ϕ ∈ Conf containing Σ as a subdi-
agram and an r-DESC-morphism r : colim(Δ) → colim(Δ ⊕ ϕ).

We derive the following two extra structures.

Definition 2. A triple 〈c-DESC, Conf, sig〉 that satisfies the conditions (i)–(v) above is called a formal
specification technology, and a pair 〈c-DESC, Conf〉 that satisfies the condition (i) is called a formal
configuration technology.

Now we are going to prove that interface extraction commutes with systems assembling, as stated
above. We will employ a minor technical statement, which we prove first.

Proposition 1. An arbitrary functor fun determines colimits of a diagram Δ if and only if it lifts colimits
and the diagram fun ◦ Δ has a colimit.
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Proof. The “if” part is obvious, so we prove the “only if” part. Let δ be an arbitrary colimit of the
diagram Δ, and let ξ be an arbitrary colimit of the diagram fun ◦ Δ. By assumption, diagram Δ has
a colimit δ′ with fun ◦ δ′ = ξ. We have that δ = �i� ◦ δ′ for some isomorphism i, hence cocone fun ◦ δ =
�fun(i)� ◦ ξ is a colimit of the diagram fun ◦ Δ. We see that the functor fun preserves colimits of the
diagram Δ; hence it determines them.

Proposition 2. In every formal specification or design technology, the functor sig preserves colimits of
all configurations.

Proof. Let η and ε be a unit and a counit of the adjunction sig∗ � sig given by condition (iii) of Definition 1.
Recall that η is a natural transformation of functor 1SIG to sig ◦ sig∗ = 1SIG that consists of identity
SIG-morphisms while ε is a natural transformation of the functor sig∗ ◦ sig to 1c-DESC. According to the
standard definition of a counit via a unit [29, p. 82], the condition sig(εS)◦ηsig(S) = 1sig(S) holds for every
S ∈ Ob c-DESC, so sig(εS) = 1sig(S). Since every faithful functor reflects monomorphisms [1, Proposition
7.37(2)], condition (ii) of Definition 1 implies that εS is a monomorphism. (At the same time, εS is an
epimorphism since every faithful functor reflects epimorphisms as well [1, Proposition 7.44].)

Choose an arbitrary diagram Δ ∈ Conf and let Δ∗ = sig∗◦sig◦Δ. Since sig◦Δ∗ = sig◦Δ, condition (v)
of Definition 1 implies Δ∗ ∈ Conf. Hence, by condition (i) of Definition 1, there exists a colimit of the
kind σ : Δ∗ → �S�. Consider cocone σ∗ = sig∗ ◦ sig ◦ σ : Δ∗ → �S∗� where S∗ = sig∗

(
sig(S)

)
. Let

u : S → S∗ be a colimit arrow that satisfies the condition σ∗ = �u� ◦ σ. Since σ = �εS� ◦ σ∗, we have
εS ◦ u = 1S , so εS as a right-invertible monomorphism is an isomorphism [1, Proposition 7.36]. Hence
σ∗ is a colimit of the diagram Δ∗. Since the functor sig∗ induces full embedding of category SIG into
c-DESC, cocone sig ◦ σ∗ = sig ◦ σ is a colimit of the SIG-diagram sig ◦ Δ∗ = sig ◦ Δ. So the diagram
sig ◦Δ has a colimit. Hence, by condition (iv) of Definition 1 and Proposition 1, the functor sig preserves
colimits of diagram Δ.

This result allows determining all diagrams capable to be used as configurations. A SIG-diagram Θ
is called sig-preconfiguration if it has a colimit and the functor sig lifts colimits of all diagrams from class
Dsig−1({Θ}) = {Δ | sig ◦ Δ = Θ}. It is easy to see that the class Conf can always be represented as
Dsig−1(IC) for some class IC of sig-preconfigurations [26, Proposition 6].

As stated in the Introduction, formal technologies are themselves considered as objects of categories
whose constructions represent procedures of developing complex technologies. Engineering of technologies
will be considered in detail in Sec. 4. As an introduction to it a notion of morphism for formal technologies
is defined following the ideas of [26, Sec. 6].

Definition 3. A morphism of a formal design technology

〈c-DESC1, Conf1, sig1 : c-DESC1 → SIG1, r-DESC1〉
to

〈c-DESC2, Conf2, sig2 : c-DESC2 → SIG2, r-DESC2〉
is a triple of functors

〈cm: c-DESC1 → c-DESC2, sm: SIG1 → SIG2, rm: r-DESC1 → r-DESC2〉
that satisfies the following conditions:

(i) cm ◦ Conf1 ⊆ Conf2;
(ii) cm preserves colimits of all diagrams from the class Conf1;
(iii) sig2 ◦ cm = sm ◦ sig1;
(iv) rm(i) = cm(i) for each i ∈ Iso c-DESC1.
A pair of functors 〈cm, sm〉 that satisfies conditions (i)–(iii) is called a morphism of a formal specifi-

cation technology 〈c-DESC1, Conf1, sig1〉 to 〈c-DESC2, Conf2, sig2〉. A functor cm that satisfies conditions
(i)–(ii) is called a morphism of a formal configuration technology 〈c-DESC1, Conf1〉 to 〈c-DESC2, Conf2〉.
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If all constituents of a morphism of technologies are embeddings of subcategories, then the domain of the
morphism is called a subtechnology of its codomain.

〈c-DESC1, Conf1, c-DESC1
sig1� SIG1, r-DESC1〉

Dcm

⊆

〈c-DESC2,

cm
�

Conf2, c-DESC2

cm

�
sig2� SIG2,

sm

�
r-DESC2〉

rm
�

Requirements to functors that comprise a morphism of technologies guarantee naturality of morphism
action with respect to systems assembling (conditions (i)–(ii)), extraction of interfaces (condition (iii)),
and refinements (condition (iv)). Naturality with respect to componentwise refinement of configurations
(condition (viii) of Definition 1) holds in the following sense. For every diagram Δ: X → c-DESC ∈ Conf1
and every natural transformation of the kind ϕ : |Δ| → Σ ∈ Mor r-DESC|X|

1 , family rm(ϕ) refines all
objects of diagram cm◦Δ ∈ Conf2, and diagram cm◦(Δ⊕ϕ) can be considered as an ultimate refinement
result (i.e., taken for (cm ◦Δ)⊕ rm(ϕ)) with the r-DESC2-morphism rm(r) as an appropriate refinement
of its colimit vertex. Indeed, we have rm(ϕ) : |cm ◦ Δ| → cm ◦ Σ. Diagram cm ◦ (Δ ⊕ ϕ) contains
subdiagram cm ◦ Σ and, since the functor cm preserves colimits of diagrams Δ and Δ ⊕ ϕ, we have
rm(r) : colim(cm ◦ Δ) → colim

(
cm ◦ (Δ ⊕ ϕ)

)
.

Consider several examples of formal technologies. An arbitrary category C generates the trivial formal
design technology triv(C) = 〈C, ∅, 1C , (ObC, Iso C)〉 so that mapping triv can be obviously extended
to a functor from CAT to category ARCH comprised of all formal design technologies and all their
morphisms. Among nontrivial formal technologies we are interested in technologies “over” category Set
that emerge as a result of formalizing many familiar software program modeling methods. Here sets
with some structure (algebraic systems, graphs, etc.) are employed as models and maps compatible
with the structure are employed as descriptions of activities of integration. sig is a canonical functor
that sends a model to its underlying set by “forgetting” the structure, and left adjoint to it creates
“minimal” (discrete) structure on a set. Antifunctional relations are often employed as refinements that
“expand” underlying set elements to subsets. For example, consider the formal technology for discrete
event modeling [24] defined as

SM = 〈Pos, CPos, |−|, r-Pos〉
where:

• Pos is a category of all partially ordered sets and all monotonic maps (a model here is a scenario,
viz. a set of events partially ordered by causal relations);

• CPos is the smallest class of Pos-diagrams that contains all dots and is closed under gluing
of cocones, formation of coproducts, and singular patches (complex scenarios can be assembled
by means of pairwise synchronization of constituents in at most one event in order to prevent
violation of causality);

• |−| : Pos → Set : S �→ |S| is a canonical functor that “forgets” order (external observer of
a scenario “sees” a set of events comprising it but does not see how they are causally ordered; in
particular, every procedure of scenario integration can be specified by mapping events);

• r-Pos is a category with all partially ordered sets as objects in which a morphism of X to Y is
a total antifunctional relation R ⊆ X × Y that satisfies the condition

∀x, x′ ∈ X ∀ y, y′ ∈ Y
(
(xRy ∧ x′Ry′ ∧ x �= x′) ⇒ (x ≤ x′ ⇔ y ≤ y′)

)

(refinement of a scenario consists in expanding events to subscenarios with full inheritance of
order).

Left adjoint to the functor of extracting interfaces |−| : Pos → Set is the discrete ordering functor
dord: Set → Pos: I �→ 〈I, =〉. The technology SM can be used as an example to show how “rigid” is
a formal construction of an interface: there exists a unique (up to an equivalence of categories) nontrivial
functor of extracting scenario interfaces that satisfies conditions (ii)–(iii) of Definition 1. Indeed, let psig
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be a functor with domain Pos that satisfies said conditions, let ω be a counit of adjunction psig∗ � psig.
The pair

(
psig∗

(
psig(ObPos)

)
, psig∗

(
psig(MorPos)

))
is a full subcategory of Pos, denoted as PPos,

which is isomorphic to a codomain of the functor psig. Since ω consists of monotonic bijections, PPos
contains a discretely ordered set of arbitrary cardinality. If PPos also contains a set X equipped with
an order different from equality, then we will show that ω consists of isomorphisms. Indeed, there exist
elements a, b ∈ X such that a < b (i.e., a �= b and a ≤ b). Choose arbitrary Pos-object Y and elements
p, q ∈ psig∗

(
psig(Y )

)
that satisfy the condition ωY (p) ≤ ωY (q). Define map f : X → Y as follows:

f(x) =

{
ωY (p), x ≤ a,

ωY (q) otherwise.

Clearly, the map f is monotonic, so by the definition of adjunction there exists a monotonic map f∗ : X →
psig∗

(
psig(Y )

)
with ωY ◦ f∗ = f , so p = f∗(a) ≤ f∗(b) = q. Since p and q are chosen arbitrarily, ωY is an

isomorphism. Consequently, the category PPos either consists of discretely ordered sets and is equivalent
to the category Set or is equivalent to the category Pos.

As a more advanced example consider the formal technology of automated development of algebraic
specifications and ontologies SPECWARE [35]. In it specifications are written in classic multi-sorted
first-order language (extended by certain higher-order constructions). A signature of each employed
language is a finite set of sort symbols and multi-sorted functional symbol ranks (types). A signa-
ture morphism is a map of signatures φ : σ → σ′ consistent with ranks in the sense that for each rank
f : S1, . . . , Sk → S0 ∈ σ we have φ(f) : φ(S1), . . . , φ(Sk) → φ(S0). All finite multi-sorted signatures and
all signature morphisms comprise a subcategory of Set denoted as MSS.

Signature morphisms are “lifted” to the level of specifications as follows. Let SLSσ be the set of all
specifications, viz. finite sets of statements of language of signature σ. Denote by SLS a category with
a class of objects

⋃

σ∈ObMSS

SLSσ and Mor(T, T ′) = {φ : σ(T ) → σ(T ′) | T ′ � φT} for all SLS-objects

T and T ′. Standard map composition law turns it into a category since the conditions T ′ � φT and
T ′′ � ϑT ′ for arbitrary specifications T , T ′, and T ′′ and arbitrary signature morphisms φ : σ(T ) → σ(T ′)
and ϑ : σ(T ′) → σ(T ′′) imply T ′′ � ϑφT . The map that sends a specification to its language signature
induces a functor σ(−) : SLS → MSS. This functor is faithful and has a left adjoint that sends each
signature to an empty specification of this signature with an identity being the adjunction unit.

The category SLS is finitely complete. Indeed, the category MSS considered as a subcategory of Set
is closed under formation of colimits of finite diagrams since it is easy to see that a pushout constructed
in Set over every pair of MSS-morphisms is contained in MSS. In turn, a colimit of a finite diagram
Δ: X → SLS is de-facto computed in the category MSS: its vertex is �

⋃

I∈Ob X

ϕIΔ(I)�, where ϕ is

a family of edges of a colimit of the MSS-diagram σ ◦ Δ. In other words, the functor σ(−) lifts colimits
of all finite SLS-diagrams whose class will be denoted as FinSLS.

A refinement of an SLS-object T to T ′ is a pair of SLS-morphisms with the same end of the kind
φ : T → X ← T ′ :φ′ provided that φ′ determines a definitional extension of the theory T ′, i.e., morphism
φ′ is injective and X contains axioms that unambiguously define each symbol from σ(X) \ φ′(σ(T ′)

)
by

means of symbols from φ′(σ(T ′)
)
. Roughly speaking, a refinement exceeds signature morphism by its

capability to remove derived symbols from its codomain. An identity refinement is a pair of identity
SLS-morphisms. Composition of refinements is computed via pushouts: if a pair ϑ : T ′ → Y ← T ′′ :ϑ′ is
a refinement as well, then their composition is pair ϑ′′φ : T → Z ← T ′′ :φ′′ϑ′ where ϑ′′ : X → Z ← Y :φ′′
are edges of pushout ϑ′′φ′ = φ′′ϑ. It is proved in [35] that the class of all definitional extensions is closed
under compositions and formation of pushouts. Hence all SLS-objects and all their refinements comprise
a category, denoted as r-SLS. It includes SLS as a (proper) subcategory since every SLS-morphism
φ : T → T ′ induces refinement φ : T → T ′ ← T ′ :1T ′ . For every finite SLS-diagram Δ and every family ϕ
of refinements of its objects the procedure of constructing a diagram of the kind Δ⊕ϕ from condition (viii)
of Definition 1 and a refinement r : colim(Δ) → colim(Δ ⊕ ϕ) is described in [35].
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In summary, there exists a formal design technology

SPECWARE = 〈SLS, FinSLS, σ(−) : SLS → MSS, r-SLS〉.

2. Traceability and Aspect-Oriented Approach

We build a category-theoretic semantic model of traceability and AOP by means of constructions in
formal design technologies. Fix an arbitrary formal design technology

AR = 〈c-DESC, Conf, sig, r-DESC〉
and let ε be a counit of the adjunction sig∗ � sig. It is well known that traceability is easily compromised
by refinement (the textbook example is implementing an algebraic specification by means of an algorithmic
programming language). During the integration, in contrast, at least partial tracing is usually provided
(here the example is a sum of indexed family of sets in the category Set constructed by supplying
elements of each component with its index as a “label”). Therefore, for an arbitrary transformation, viz.
an r-DESC-morphism r : S → T , the following necessary condition for ability to trace its result to the
source along it emerges [26]: reversing its direction, viz. category-theoretic dualization, shall turn the
refinement into an activity of integration, viz. a c-DESC-morphism rop : T → S.

Refinements and activities of integration shall be traced jointly as refinement is interspersed with
systems assembling during the software engineering process. Such joint tracing is easiest to perform in
the case where the trace rop is right-invertible [24]. Indeed, the existence of a c-DESC-morphism s : S → T
with rop ◦ s = 1S is equivalent to the following condition. For every c-DESC-morphism p : X → S that
describes integration of a component X into the system S there exists an activity of integration X into T
compatible with tracing of refinement r in the sense that composition of trace rop with this activity
produces p. Such activity is s ◦ p, since rop ◦ (s ◦ p) = p.

T T

S

r
�

X
p�

s◦p �

S

rop

�

In turn, for each c-DESC-morphism q : T → Y , the morphism q ◦s describes an activity of integration
of S into Y compatible with tracing in a slightly different sense: choice q = rop turns it into an identity
morphism. Note that s is a regular monomorphism which is the category-theoretic analog of embedding
the refinement source into the result without invading its structure. In practice its construction can
be very labor-intensive, but it is not always needed since the primary subject for tracing along systems
assembling processes are integrational requirements asserted to model interfaces. In this case, it is enough
to require the SIG-morphism sig(rop), which represents the trace at interface level and is called a labeling,
to be right-invertible rather than the trace rop itself [24]. Implementation of inverting the labeling is not
usually too costly, since interfaces are designed so that their integration is “easier” than integration of
models. A particular case of value-based requirements traceability [10] is obtained as we reduce costs
associated with traceability by limiting the class of requirements being traced in accordance with their
importance.

According to condition (vii) of Definition 1, a trivial example of traceable refinement is a c-DESC-iso-
morphism (recall that morphism dual to an isomorphism is identified with an inverse to it and is an
isomorphism as well [1]). Use the following technique to reveal nontrivial traceable refinements. Consider
a collection of all common subcategories of c-DESC and r-DESCop that contains all c-DESC-isomor-
phisms. It is a complete lower semilattice under inclusion. Denote by cr-DESC intersection of all its
maximal elements.

Definition 4. A cr-DESC-morphism t is called a (sig-)trace if the SIG-morphism sig(t) is a retraction
(i.e., has a right inverse). A sig-image of a trace is called a (sig-)labeling. An r-DESC-morphism dual
to a trace is called a traceable refinement. A refinement is called invertible if it is traceable and dual
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to a c-DESC-retraction. A formal technology AR is said to support tracing if all refinements in it are
invertible.

Denote by tr-DESC a pair that consists of the class of all c-DESC-objects and the class of all traces.

Proposition 3. tr-DESC is a subcategory of c-DESC that possesses the following properties.
(i) Iso c-DESC ⊆ Mor tr-DESC ⊆ Epi c-DESC.
(ii) Iso SIG ⊆ sig(Mor tr-DESC) ⊆ Retract SIG.

Proof. Every retraction is an epimorphism [1, Proposition 7.42] and every faithful functor reflects epimor-
phisms [1, Proposition 7.44].

Traceable refinements “nicely” act on configurations. Consider arbitrary diagrams Δ: X → c-DESC ∈
Conf and Σ: |X| → c-DESC linked by a Dc-DESC-morphism 〈τ, jx〉 : Σ → Δ, where τ is a family of
c-DESC-morphisms and jx : |X| ↪→ X is an embedding of categories. Denote by τ ⇒ Δ the drawing of
the Dc-DESC-diagram with schema 2 that represents this morphism and call it a push of diagram Δ
by family τ [26, Sec. 5]. Push does not change a colimit of diagram Δ since it can be reduced to
a multiple gluing of cocones of the kind �t�, where t runs over family τ . Therefore, traceable refinements
of components are noninvasive with respect to systems assembling: if family τ consists of traces and the
push is a configuration, then condition (viii) of Definition 1 can be satisfied by taking the push for Δ⊕τop.
This fact motivates introducing the following concept.

Definition 5. A formal technology AR is called counified if r-DESC ⊆ c-DESCop and the class Conf is
closed under pushes by r-DESCop-morphisms.

In a formal technology over Set labelings are surjective maps since by axiom of choice every Set-epi-
morphism is a retraction. Action of a refinement top : X → Y dual to a surjection t : |Y | → |X| can be
considered as expansion of all elements of set |X| to their preimages under t that comprise partitioning of
set |Y | with (partial) transition of a structure of object X to them. Element x ∈ |X| can be considered
as a designator of a concern that is implemented via expansion according to intuitive understanding of
refinement. An example is a refinement of scenarios in a discrete event modeling technology SM that
partitions its result to subsets that are well-ordered in the sense that for every x, y, z, u ∈ Y such that
t(x) = t(y) �= t(z) = t(u) the condition x ≤ z implies y ≤ u (see [24]). The class of all scenario labelings
consists of all surjective maps of sets. The technology SM supports tracing and is counified. Moreover, it
will be shown in Sec. 5 that the choice of refinements in this technology is optimal with respect to balance
between breadth of available transformations of models and the cost of tracing them.

The most direct and cost-effective method to provide full traceability consists in “storing” traces of
refinements with models of programs generated from concerns by them [2]. Take into account that for
software engineering in general and for AOP in particular of specific interest is the impact of refinements
on integrational capabilities of models. So it is enough to equip models with actions of refinements
at interface level, viz. labelings. (In Sec. 3 we will see that capability to “lift” refinements to level
of models is a canonical condition of separation of concerns, viz. shaping each constituent concern as
a modular architecture unit.) Integration as well as refinement of such enriched models shall be performed
consistently on two levels: modular bases and aspect structures. As shown in [12, Sec. 7], there is
a specific category-theoretic construction intended for natural attaching of actions to objects, viz. a comma
category [29, Sec. II.6]. Consider a comma category sig ↓ SIG. Its objects are all pairs of the kind
〈A, l : sig(A) → L〉, where A is a c-DESC-object and l is a SIG-morphism. A morphism of an object
〈A1, l1 : sig(A1) → L1〉 to 〈A2, l2 : sig(A2) → L2〉 is a pair 〈f : A1 → A2, b : L1 → L2〉 with b◦l1 = l2◦sig(f).

〈A1, sig(A1)
l1� L1〉

〈A2,

f
�

sig(A2)

sig(f)
�

l2� L2〉
b
�
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Definition 6. An aspect-oriented model (AO-model) is a (sig ↓ SIG)-object 〈A, l : sig(A) → L〉 such that
l is a sig-labeling. The c-DESC-object A is called a (modular) base of the AO-model, the SIG-morphism l
is called its (aspectual) labeling, the SIG-object L is called its aspectual structure.

Denote by AO the full subcategory of sig ↓ SIG whose class of objects consists of all AO-models.
We explain this construction by example of a formal technology over Set. Recall that here a labeling l
is a surjective map that sends each element of set |A| to an element of set L that designates a concern
for which it is intended. In particular, it is natural to call an AO-model an aspect if L is a singleton
set in it. Essentially (up to isomorphism) a labeling is an equivalence relation on set |A| whose equiv-
alence classes represent particular aspects. Any equivalence relation turns A into a valid AO-model so
aspectual structure in general has no interference with modular structure. An AO-morphism is precisely
a c-DESC-morphism that preserves this equivalence relation. Since a canonical forgetful functor from
the category Equ of all sets equipped with equivalence relation and all their homomorphisms to Set is
topological [1, Sec. 21], a category of labeled models is in many familiar cases equivalent to a topological
category over c-DESC. In these cases it “inherits” systems assembling techniques from original unlabeled
models.

For example, in the discrete event modeling technology SM an AO-model is precisely a partially
ordered multiset (pomset) of aspects. All labeled scenarios comprise a category equivalent to a topological
category over Pos. A similar approach to scenario modeling was proposed as long ago as in the 1980’s [31];
however the nature of labels and methods of their synthesis remained unclear because they have not been
examined in the context of AOP. Various classes of labeled scenarios are mastered by process engineering
technologies that offer different specialized notations: graphical, hypertext, Petri nets, etc. In addition,
one of the classical semantical models of AOP known as trace semantics is based upon labeled scenarios [8].

We return to considering arbitrary formal technologies. We will employ an arrow category of the
kind C2 induced by an arbitrary category C. Recall that the class of all C2 -objects consists of all
C-morphisms (diagrams of the kind 2 → C) and a morphism from f to g is a pair of C-morphisms 〈u, v〉
with v ◦ f = g ◦u. There exist functors dom, codom: C2 → C that send a C-morphism to its domain and
codomain, respectively.

Let LAB be a full subcategory of SIG2 whose class of objects consists of all sig-labelings and let
il : LAB ↪→ SIG2 be an embedding. We will use the following “forgetful” functors induced by the structure
of the category sig ↓ SIG:

mod: AO → c-DESC

: 〈A, l〉 �→ A, 〈f, b〉 �→ f,

asp: AO → LAB

: 〈A, l〉 �→ l, 〈f, b〉 �→ 〈sig(f), b〉,
int = sig ◦ mod = dom ◦ il ◦ asp: AO → SIG

: 〈A, l〉 �→ sig(A), 〈f, b〉 �→ sig(f),
str = codom ◦ il ◦ asp: AO → SIG

: 〈A, l〉 �→ codom l, 〈f, b〉 �→ b.

The functors 1AO, mod, asp, and int will be called fundamental. They allow building AO as a universal
construction in the category CAT (cf. [29, pp. 47–48]): it is easy to see that the equality sig ◦ mod =
(dom ◦ il) ◦ asp that defines the functor int represents a pullback of a pair of functors sig : c-DESC →
SIG ← LAB :dom◦ il with AO as a vertex. It follows that enriching models of programs by aspect labeling
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can be performed uniquely (up to isomorphism).

AO
asp� LAB

c-DESC

mod

�
sig� SIG

dom ◦il
�

Fundamental functors play an important role in formalizing aspect-oriented design: later we will
prove (see Theorem 1) that they allow extracting different interfaces from AO-models in the sense of
Definition 1, i.e., generate formal design technologies. Different interfaces are needed to elaborate design
decisions of different kinds: the “modular” interface extracted by the functor mod plays a key role at
modularizing aspects (see Sec. 3), the aspect interface extracted by the functor asp plays a key role at
constructing labeling, the original interface extracted by the functor int plays a key role at specifying
integrational requirements to models without detailing their modular or aspectual structure. Other kinds
of interfaces may exist in general that “detail” original interfaces from the category SIG, i.e., are naturally
mapped to them.

At the same time, as we see later (see Proposition 4), the aspectual structure extracted by the functor
str cannot be employed as an interface of nontrivial AO-models. The functor str formally expresses
a “quintessence” of an aspect-oriented extension of system design technologies which is irreducible to
concepts of modular approach. Remarkably the functor str is surjective, so every aspectual structure is
implemented in an appropriate AO-model (Corollary 1.4). It is shown in [25] that the formal definition of
key concepts of aspect and weaving requires only this functor in addition to construction of the category
AO. Recall that assembling of a program from aspects is called weaving since it exceeds the bounds of
traditional modular linking. In Sec. 3, we will formally describe weaving as a universal construction in
the category AO, in particular, as a colimit of a connection diagram of a certain specific kind.

We state rules to construct configurations and refinements of AO-models from modular “material.”
Refinements are naturally obtained as dual to traces (untraceable refinements of a technology AR are
ignored completely). Let

tr-AO =
(
Ob AO, mod−1(Mor tr-DESC)

)
.

By Proposition 3, tr-AO is a category.
For configurations of AO-models it is reasonable to employ AO-diagrams extending modular config-

uration whose colimits are consistently computed at levels of modular bases and aspectual structures. In
addition, the counifiedness property is desired in order to guarantee non-invasive action of componentwise
refinements of systems.

Definition 7. An AO-diagram Δ is called aspectually determined if functor 〈mod, str〉 : AO → c-DESC×
SIG determines its colimits. Let ai be an arbitrary functor from AO to an arbitrary category INT.
A class of INT-diagrams AIDia is called aspectually closed (with respect to ai) if the class of AO-diagrams
Dai−1(AIDia) consists of aspectually determined diagrams, is contained in class Dmod−1(Conf), and is
closed under pushes by tr-AO-morphisms.

Denote by AOIntai the union of all aspectually closed classes of INT-diagram. Clearly, it is an
aspectually closed class itself.

Definition 8. An arbitrary functor ai with domain AO is said to generate an aspect-oriented formal
technology (AO-technology) over AR if a quadruple

AOai(AR) = 〈AO,Dai−1(AOIntai), ai, tr-AOop〉
is a formal design technology and there exists a functor si such that si ◦ ai = int.

Theorem 1. Every fundamental functor generates an AO-technology over AR.
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Proof. Conditions (i), (v)–(viii) of Definition 1 hold for the quadruple AOai(AR) upon any choice of the
functor ai with domain AO. It remains to verify conditions (ii)–(iv) for functors mod and asp since for
the functor 1AO they hold obviously and for the functor int they hold due to stability with respect to the
composition of functors.

(ii). The functor dom ◦ il is faithful since for two arbitrary LAB-morphisms 〈f, b〉, 〈f, b′〉 : l → k the
condition b′ ◦ l = k ◦ f = b ◦ l holds, hence b′ = b given that l is right-invertible. Therefore, the functor
mod, being an edge parallel to dom ◦ il in the pullback in CAT, is faithful. Similarly, the functor asp
parallel to the faithful functor sig is faithful.

(iii). The discrete labeling functor

mod∗ : c-DESC → AO

: A �→ 〈A, 1sig(A)〉, f �→ 〈f, sig(f)〉
is left adjoint to mod with an identity as the adjunction unit. The functor

asp∗ : LAB → AO

: l �→ 〈sig∗(dom l), l〉, 〈p, q〉 �→ 〈sig∗(p), q〉
is left adjoint to asp with an identity as the adjunction unit.

(iv). By Definition 7, the functor mod lifts colimits of configurations. To see that the functor asp
lifts them as well, consider an arbitrary diagram Δ ∈ Dasp−1(AOIntasp) and a colimit σ : asp ◦Δ → �k�.
Choose an arbitrary colimit δ : Δ → 〈A, l〉. By Definition 7, str ◦ δ is a colimit of diagram str ◦ Δ and
mod ◦ δ is a colimit of the diagram mod ◦Δ, so int ◦ δ is a colimit of diagram int ◦Δ since the functor sig
preserves colimits of configurations by Proposition 2. It can be verified directly that l is a colimit vertex
of a diagram il ◦ asp ◦ Δ in the arrow category SIG2 , so there exists a colimit asp ◦ δ : asp ◦ Δ → �l�
since l is sig-labeling. Since colimit is unique up to isomorphism, there exists a LAB-isomorphism i such
that σ = �i� ◦ (asp ◦ δ), so a cocone dom ◦ il ◦ σ = �dom

(
il(i)

)
� ◦ (int ◦ δ) is a colimit of the diagram

int◦Δ. Since the functor sig lifts colimits of configurations, there exists a colimit θ : mod◦Δ → �B� with
sig ◦ θ = dom ◦ il ◦ σ. Hence 〈θ, codom ◦ il ◦ σ〉 : Δ → �〈B, k〉� is a colimit.

Corollary 1.1. An arbitrary functor ai : AO → INT generates an AO-technology over AR if and only if
it satisfies the following conditions.

(i) The functor ai has a left adjoint with an identity as the adjunction unit.
(ii) int ◦ ai∗ ◦ ai = int where ai∗ is left adjoint from the condition (i).
(iii) Every aspectually closed class of INT-diagrams consists of ai-preconfigurations.

Proof. The necessity follows from Definition 8 taking into account that si = si ◦ (ai ◦ ai∗) = int ◦ ai∗
for every functor si that satisfies the condition si ◦ ai = int. The sufficiency follows from the fact that
conditions (i), (v)–(viii) of Definition 1 hold upon any choice of the functor ai (cf. the proof of Theorem 1)
and condition (ii) is guaranteed since the functor int is faithful and the functor ai is the first component
of its factorization (cf. [1, Proposition 3.30(2)]).

Corollary 1.2. Every configuration in the technology AOint(AR) is a configuration in every AO-tech-
nology over AR. In turn, every configuration in every AO-technology over AR is a configuration in
AO1AO(AR).

Proof. Let ai : AO → INT be an arbitrary functor that generates an AO-technology over AR, and let
si : INT → SIG be a functor that satisfies the condition si ◦ ai = int. Choose an arbitrary AO-diagram
Δ ∈ Dint−1(AOIntint) and let Θ = int ◦ Δ and Ξ = ai ◦ Δ. Every AO-diagram Δ′ ∈ Dai−1({Ξ}) is
aspectually determined and belongs to the class Dmod−1(Conf) since int ◦ Δ′ = si ◦ Ξ = Θ ∈ AOIntint.
Denote by ai ⇒ Ω a class of Dai-images of all pushes of an AO-diagram Ω by tr-AO-morphisms. Every
AO-diagram Δ′′ ∈ Dai−1(ai ⇒ Δ′) is aspectually determined and belongs to Dmod−1(Conf) as well since

int ◦ Δ′′ ∈ si ◦ (ai ⇒ Δ′) ⊆ int ⇒ Δ′ ⊆ AOIntint.
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By induction we define a sequence of classes of INT-diagrams PDia as

PDia0 = {Ξ}, PDian+1 =
⋃

Ω∈Dai−1(PDian)

ai ⇒ Ω.

The class
⋃

n≥0
PDian is aspectually closed and contains Ξ. Hence Δ ∈ Dai−1(AOIntai). The first statement

is proved.
The second statement follows directly from the fact that class Dai−1(AOIntai) is aspectually closed

with respect to functor 1AO.

Corollary 1.3. The class Mor tr-AO consists of all traces of the technology AOint(AR).

Corollary 1.4. The functor str is right-invertible.

Proof. The functor 1− : SIG ↪→ LAB: A �→ 1A, f �→ 〈f, f〉 is a right inverse to the functor codom ◦ il and
the functor asp is right-invertible by Theorem 1.

There exist design technologies in which aspect-oriented extension introduces no essentially new con-
structs. We will show formally that they are characterized by an absence of traceable refinements capable
of generating a nontrivial aspectual structure: every labeling in them turns out to be an isomorphism.
This criterion is equivalent to a number of others such as capability of the functor str to extract interfaces
from AO-models.

Definition 9. A formal design technology AR is called aspectually trivial if the functor mod is an
equivalence of categories AO and c-DESC.

Proposition 4. The following conditions are equivalent for each formal technology AR.
(i) The formal technology AR is aspectually trivial.
(ii) Every labeling is an isomorphism.
(iii) The functor int is naturally isomorphic to the functor str.
(iv) The functor str is faithful.

Proof. We will employ properties of equivalence of categories stated in [29, Sec. IV.4]. Denote by μ the
counit of the adjunction mod∗ � mod. Fix an arbitrary sig-labeling l : X → L.

(i) =⇒ (ii). By paragraph (iii) of the proof of Theorem 1, we have l = str(μasp∗(l)). By assumption,
μ consists of isomorphisms. Hence l is an isomorphism.

(ii) =⇒ (i). By the same paragraph (iii) of the proof of Theorem 1, the assumption implies that μ
consists of isomorphisms.

(ii) =⇒ (iii). By assumption, a natural transformation of functor int to str that consists of labelings
of all AO-models is a natural isomorphism.

(iii) =⇒ (iv). Every functor which is naturally isomorphic to a faithful functor is faithful itself.
(iv) =⇒ (ii). Consider the AO-morphism l∗ = asp∗(〈l, 1L〉). Since str(l∗) = 1L, the assumption

implies that l∗ ∈ Mono AO (every faithful functor reflects monomorphisms [20, Proposition 7.37(2)]).
Hence l = int(l∗) ∈ Mono SIG (every functor that has a left adjoint preserves all colimits [29, Sec. V.5] in
particular monomorphisms). Since l is right invertible, we conclude that l ∈ Iso SIG.

For example, it is easy to verify that condition (ii) of Proposition 4 holds for the technology
SPECWARE, so it is aspectually trivial: aspect-oriented techniques traditionally are not used in an
algebraic approach to software design.

3. Weaving, Separation of Concerns, and Explication of Aspectual Structure

We are going to describe a megamodel of aspect weaving procedure as a universal construction in an
AO-technology [25]. In classical AOP, weaving consists in plugging the aspect program called an advice
into the base program at specified places called join points [4]. Every time when execution of the base
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program reaches a join point the advice is called. Therefore, an advice is usually a block of source code
guarded by the condition that identifies the join point, and the beginning of the block serves as an entry
point to the advice. Thus the weaving tool accepts two specifications as input:

• the description of join points in the base program known as pointcut and frequently specified in
the form of a regular expression over syntactic structures of the programming language on which
the base program is written;

• the description of entry points to the advice in join points.
In the first step of weaving, a sufficient number of copies of the advice, one for each join point, are
(virtually) created with a correspondent entry point marked in each copy. In the second step, these points
are “glued” together avoiding invasion into the aspectual structure of both the base and the advice. For
formal description of the weaving specification, an extra model C called a connector [30] is employed in
addition to models of the base B and of the advice W . The connector is integrated with the base at
join points and with the advice at entry points generating a pair of AO-morphisms j : B ← C → W :e.
(Here the distinction of weaving from modular linking vividly manifests itself since linking is formalized
by one-step activity of the kind l : M → S, where M denotes a module and S denotes a system.) It
is easy to see by example of a discrete event modeling AO-technology that the first step of weaving is
represented as a product C ×W and the second step is represented as a pushout (connection) of a pair of
morphisms j : B ← C → C × W :〈1C , e〉. These constructions shall be natural with respect to extracting
modular base and aspectual structure so the requirement similar to aspectual determinedness is asserted
(cf. Definition 7): the functor 〈mod, str〉 : AO → c-DESC×SIG shall determine both the product and the
pushout. If this requirement is satisfied, then the weaving result is a vertex of the pushout denoted by
j �� e.

C
〈1C ,e〉� C × W

B

j

�
� j �� e

�

Clearly, the weaving result is unique up to isomorphism provided that it exists. Moreover, since the
AO-morphism 〈1C , e〉 : C → C×W is left-invertible (we have πC ◦〈1C , e〉 = 1C , where πC : C×W → C is
a projection), the pushout edge parallel to it is left-invertible as well (cf. dual statement in [1, Proposi-
tion 11.18]), so the base is noninvasively embedded into the weaving result. One more property of weaving
easily verifiable over the diagram above is independence of the weaving result on the order of weaving
several mutually independent advices to the same base.

AOP technologies offer a variety of weaving tools including method calls dispatchers, converters of
executable byte-code, source code pre-compilers. However it is possible to avoid employing them, making
it easier to build complex programs, if the plugged aspects can be modularized, viz. shaped as modular
architecture units: classes (elements of object-oriented decomposition), tables in the database, and so on.
Modularization of all aspects comprising an AO-model is the most straightforward method to label them
known as a separation of concerns that is one of the classical software engineering problems.

Modularizable AO-models are distinguished among others by behaving like modular units when being
integrated with modules. Capabilities to integrate modules into an AO-model are determined by its
modular base. In turn, capabilities to integrate an AO-model into modules are determined by its aspectual
structure since aspects that constitute the AO-model act as its elementary units while integrating into
a module. Formally modularizable models comprise a full subcategory of AO (denoted as m-AO) such
that there exists an aspect-oriented extension (AO-extension) of a modular technology, viz. an embedding
am: c-DESC ↪→ m-AO that fully reproduces integrational capabilities of modules in the following sense.
On the one hand, all ways of integrating a module M ∈ Ob c-DESC into an AO-model A ∈ Ob m-AO
are determined by the set of morphisms Mor(am(M), A). Hence functor mod that extracts modular
interfaces (more rigorously, its restriction to m-AO denoted as am∗) shall establish a bijection between
set Mor(am(M), A) and set Mor

(
M, mod(A)

)
. On the other hand, all ways of integrating AO-model A
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into module M are determined by the set of morphisms Mor
(
A, am(M)

)
. Hence a functor am∗ : m-AO →

c-DESC shall exist that modularizes aspectual structure, trivially acts on modules (am∗ ◦ am = 1c-DESC),
and establishes a bijection between sets Mor

(
A, am(M)

)
and Mor(am∗(A), M). The capability to treat

c-DESC-object am∗(A) as a “lift” of the aspectual structure of the AO-model A to the modular level is
justified by the following additional naturality requirement: the functor sig◦am∗ that extracts an interface
from a modularized aspectual structure shall coincide with restriction of the functor str on m-AO that
reveals the original aspectual structure at the level of interfaces.

For example, every formal design technology has an AO-extension defined as an isomorphism that acts
as the functor mod∗ between c-DESC and a full subcategory of AO with class of objects {〈A, 1sig(A)〉 |
A ∈ Ob c-DESC}. In technologies over Set it generates discretely labeled models that are the most
“aspect-unoriented” in the sense that in them each concern labels only one element of the underlying set so
no scattering happens at all. We will call such an AO-extension trivial and show that every AO-extension
acts essentially (up to a natural isomorphism) the same as it: modules (i.e., c-DESC-objects) are always
sent to AO-models whose history of refining from concerns is lost (trivial). Thus, an AO-extension is
essentially uniquely determined by its codomain, viz. the class of all modularizable AO-models.

In the language of category theory, requirements to an AO-extension are concisely stated in terms of
adjunction of functors.

Definition 10. A functor am: c-DESC → m-AO, where m-AO is a full subcategory of AO, is called an
aspect-oriented extension (AO-extension) of a formal technology if it has the following adjoint functors:

• right adjoint am∗ with an identity as the adjunction unit such that am∗(f) = mod(f) for each
m-AO-morphism f ;

• left adjoint am∗ with an identity as the adjunction counit such that sig
(
am∗(f)

)
= str(f) for each

m-AO-morphism f .
Under these conditions, m-AO-objects are called (am-)modularizable AO-models.

Fix an arbitrary AO-extension am: c-DESC → m-AO, and let mao: m-AO ↪→ AO be a full embed-
ding.

Proposition 5. AO-extension am is a full left-invertible embedding: am∗ ◦ am = am∗ ◦ am = 1c-DESC.

Proposition 6. The functor mao ◦ am is naturally isomorphic to functor mod∗.

Proof. By definition, for each X, Y ∈ am(Ob c-DESC) ⊆ Ob m-AO and each AO-morphism f : X → Y ,
the condition f = am

(
am∗(f)

)
= am

(
mod(f)

)
holds. Hence, by Proposition 5,

str(f) = sig
(
am∗(f)

)
= sig

(
am∗

(
am

(
mod(f)

)))
= int(f).

Choose an arbitrary SIG-object I and let T = am
(
sig∗(I)

)
, l = asp(T ). We have

mod(T ) = am∗
(
am

(
sig∗(I)

))
= sig∗(I)

and str(T ) = int(T ) = I. Hence dom l = codom l = I. For an arbitrary SIG-morphism m such that
l ◦ m = 1I it can be verified directly that an AO-morphism 〈sig∗(m ◦ l), 1I〉 : T → T exists, so 1I =
sig

(
sig∗(m ◦ l)

)
= m ◦ l. Hence l ∈ Iso SIG.

For an arbitrary c-DESC-object P let k = asp
(
am(P )

)
, P ∗ = sig∗

(
sig(P )

)
, i = asp

(
am(P ∗)

)
. As

proved right above, i ∈ Iso SIG. It can be verified directly that an AO-morphism 〈εP , k ◦ i−1〉 : am(P ∗) →
am(P ) exists, so k ◦ i−1 = sig(εP ) = 1sig(P ), whence k = i. (Recall that ε denotes the counit of
the adjunction sig∗ � sig.) Consequently, family of AO-isomorphisms 〈1P , asp

(
am(P )

)〉 : 〈P, 1sig(P )〉 →
am(P ), P ∈ Ob c-DESC, constitutes a natural isomorphism of the functor mod∗ to mao ◦ am.

Thus, an AO-extension is consistent with respect to assembling of systems (by Proposition 6 it
preserves colimits of all c-DESC-diagrams), with respect to extracting interfaces (by Proposition 5 we
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have int
(
am(−)

)
= sig

(
am∗

(
am(−)

))
= sig(−)), and with respect to tracing (by Proposition 5 it sends

a trace of every traceable refinement to a tr-AO-morphism).
Now we show that a category of modularizable AO-models can be employed as the basic category

of models for a subtechnology in AOmod(AR). Let mtr-AO = m-AO ∩ tr-AO. Denote by DAOExt
the class of all c-DESC-diagrams Θ ∈ AOIntmod (see Definition 7) such that every AO-diagram from
class mao ◦Dam−1∗ ({Θ}) has a colimit that belongs to the class mao ◦Dam−1∗ ({θ}) for each colimit θ of
diagram Θ.

Definition 11. A modularizable AO-technology over an arbitrary formal design technology AR generated
by an AO-extension am is a quadruple

m-AOam(AR) = 〈m-AO,Dam−1
∗ (DAOExt), am∗, mtr-AOop〉.

Proposition 7. For each formal technology AR and each AO-extension am the quadruple m-AOam(AR)
is the counified formal design technology largest among all subtechnologies of AOmod(AR) that have m-AO
for a category of models and am∗ for a functor of extracting interfaces. The technology m-AOam(AR)
coincides with AOmod(AR) if and only if m-AO = AO.

Proof. Condition (ii) of Definition 1 is implied by Theorem 1, condition (iii) is implied by Defini-
tion 10. Conditions (i), (iv)–(vii) hold by construction. Condition (viii) along with counifiedness
follows from the fact that class DAOExt is aspectually closed (in the sense of Definition 7). Triple
〈mao, 1c-DESC, mao(−op)op〉 determines a morphism of the formal design technology m-AOam(AR) to
AOmod(AR). In every subtechnology whose embedding into AOmod(AR) is determined by such a triple
all configurations are contained in class Dam−1∗ (DAOExt) and all refinements are contained in the class
Mor mtr-AOop.

For formal description of modularization of aspects that constitute AO-models, an important role
is played by the unit of the adjunction am∗ � am, which will be denoted as χ. By definition, for each
m-AO-object S m-AO-morphism χS : S → am

(
am∗(S)

)
is a preimage of the c-DESC-morphism 1am∗(S)

under bijection

am∗ : Mor
(
S, am

(
am∗(S)

)) ∼= Mor
(
am∗(S), am∗(S)

)
.

Hence
str(χS) = sig

(
am∗(χS)

)
= 1sig(am∗(S)) = 1str(S),

by Definition 10, so the action of the morphism χS is nontrivial only at the level of modular bases.
Since the c-DESC-object am∗(S) represents the aspectual structure of the AO-model S on the modular
level, the c-DESC-morphism am∗(χS) : am∗(S) → am∗(S) can be considered as a canonical method of
integrating the modular base of the model to its modularized aspectual structure. This morphism is
a regular c-DESC-epimorphism (see Proposition 11 below), so it determines a factorization of the modular
base by aspects. Therefore, separate aspects can be extracted from the model by means of modular
design via tracing concerns along this morphism (here the universal category-theoretic construction of
pushout is employed which generalizes construction of full preimage in set theory [25]). Family am∗(χS),
S ∈ Ob m-AO, comprises a natural transformation of the functor am∗ that extracts modular bases from
modularizable AO-models to the functor am∗ that extracts their aspectual structures.

Definition 12. An (am-)modularization (of aspectual structure) of an arbitrary m-AO-object S is
a c-DESC-morphism am∗(χS), where χ is the unit of the adjunction am∗ � am.

A natural (although not unique) method of modularizing the aspectual structure of an AO-model
consists in reconstructing a traceable refinement that induced its labeling. Indeed, if for an AO-model
〈A, l〉 there exists an appropriate traceable refinement s : X → A of some c-DESC-object X to A that
satisfies the condition sig(sop) = l, then X can be considered as a modular unit consisting of all concerns
of the AO-model and sop can be considered as “canonical” modularization of its aspectual structure.
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Reconstruction of a refinement can be considered full-fledged if every activity of integrating the model into
a system is projected onto a modular level in the form of a pair of activities of integrating modular bases
and aspectual structures which are consistent with respect to reconstructed refinements. Refinements of
AO-models can often be similarly reconstructed, viz. projected to modular level in the form of a consistent
pair of refinements of modular bases and aspectual structures.

In formal technologies over Set, reconstruction of a refinement of an AO-model 〈A, l〉 is possible in
the case where the labeling is to a certain extent consistent with respect to the structure of the object A.
Specifically, reconstruction consists in creating enough structure on the set l(|A|) to turn the map l into
a trace. If it is possible to create such structure, then the AO-model is usually completely separated
on modularizable aspects: their family looks like {〈l−1(x), lx : y �→ x〉 | x ∈ l(|A|)}. For example,
a refinement of a labeled scenario is (obviously) reconstructed from a labeling if and only if the latter
partitions the partially ordered set A on a well-ordered family of preimages of elements. Obvious examples
are: every nonempty discretely labeled scenario, every aspect, and every scenario in which all elements
of every order connection component have the same label. Since the technology SM support tracing,
reconstruction is always full-fledged (see Proposition 9 below). Every refinement of labeled scenarios
which permit reconstruction of refinements from their labelings is reconstructible itself.

Actions of modular level that generate labeling, integration, and refinement of AO-models will be
called explications. Condition of full-fledgedness of explication is formalized as appropriate universal
requirement.

Definition 13. An explication (of the aspectual structure) of an AO-model 〈A, l〉 is a traceable refine-
ment s of some r-DESC-object to A such that sig(sop) = l. An explication of the action of an AO-morphism
f : S → R (along explications s and r of AO-models S and R, respectively) is a c-DESC-morphism q such
that q ◦ sop = rop ◦mod(f). An explication s of an AO-model S is called universal if every AO-morphism
with a domain S is explicable along s and every explication of its codomain. The aspectual core of a for-
mal technology AR is the full subcategory c-AO of AO that consists of all objects that have a universal
explication. An explication of a refinement of AO-models g is a refinement of some r-DESC-objects that
has a trace that explicates the action of the AO-morphism gop.

S mod(S)
sop�

=⇒
R

f

�
mod(S)

mod(f)
�

rop�

q

�

..........

Proposition 8. The following conditions are equivalent for an arbitrary AO-model S = 〈A, l : sig(A) → L〉
and its arbitrary explication s : P → A.

(i) The explication s is universal.
(ii) The trace sop is a regular c-DESC-epimorphism.
(iii) The counit equality εP ◦ sig∗(l) = sop ◦ εA determines a pushout in c-DESC.

Proof. (i) =⇒ (iii). Choose an arbitrary pair of c-DESC-morphisms y : sig∗(L) → X ← A :a with
y ◦ sig∗(l) = a ◦ εA. Applying the functor sig to this equality we obtain sig(y) ◦ l = sig(a), so there
exists an AO-morphism 〈a, sig(y)〉 : S → 〈X, 1sig(X)〉. Let q : P → X be its explication along s and 1X , so
q ◦ sop = a. We have

(q ◦ εP ) ◦ sig∗(l) = q ◦ sop ◦ εA = a ◦ εA = y ◦ sig∗(l),

so q ◦ εP = y since the morphism l has a right inverse. Since εP is an epimorphism (see beginning
of the proof of Proposition 2), we conclude that q is a colimit arrow of a diagram sig∗(l) : sig∗(L) ←
sig∗

(
sig(A)

) → A :εA whose colimit is determined by the counit equality.
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sig∗
(
sig(A)

) εA� A

sig∗(L)

sig∗(l)
�

εP � P

sop

�

X

a

�

q

..................�y �

(iii) =⇒ (ii). An edge of a pushout parallel to a regular epimorphism is a regular epimorphism itself
(see the dual statement in [1, Proposition 11.18(2)]). Since all retractions are regular epimorphisms
[1, Proposition 7.75(1)], the edge of the colimit sop parallel to retraction sig∗(l) is a regular epimorphism.

(ii) =⇒ (i). Assume that sop is a coequalizer of a pair of c-DESC-morphisms u, v : Q ⇒ A. Choose
an arbitrary AO-model R with an explication r and an arbitrary AO-morphism 〈h, b〉 : S → R, assuming
that p = rop ◦ h so sig(p) = b ◦ l. We have

sig(p ◦ u) = b ◦ l ◦ sig(u) = b ◦ sig(sop ◦ u) = b ◦ sig(sop ◦ v) = sig(p ◦ v).

Hence p ◦ u = p ◦ v since the functor sig is faithful. By the definition of a coequalizer, there exists
a c-DESC-morphism q such that q ◦ sop = p. By Definition 13, this morphism is an explication of the
action of the morphism 〈h, b〉.
Proposition 9. All r-DESC-objects and universal explications of all aspectual core objects comprise a sub-
category in r-DESC that contains all invertible refinements.

Proof. Recall that all retractions are regular epimorphisms, so every invertible refinement s satisfies
condition (ii) of Proposition 8. In particular, the identity morphism 1A is a universal explication of
AO-model 〈A, 1sig(A)〉. In addition, if s : P → A and u : Q → P are universal explications (of AO-models
〈A, sig(sop)〉 and 〈P, sig(uop)〉, respectively), then v = s ◦ u is a universal explication (of AO-model
〈A, sig(vop)〉), by implication (iii) =⇒ (i) of Proposition 8 and has the capability to compose pushouts
(see dual statement in [1, Proposition 11.10(1)]): since two squares that comprise the diagram below are
pushouts, the frame rectangle is a pushout as well.

sig∗
(
sig(A)

) εA� A

sig∗
(
sig(P )

)
sig∗

(
sig(sop)

)

�
εP� P

sop

�

sig∗
(
sig(Q)

)
sig∗

(
sig(uop)

)

�
εQ� Q

uop

�

Theorem 2. There exists an AO-extension

ac: c-DESC ↪→ c-AO

: A �→ 〈A, 1sig(A)〉, g �→ 〈g, sig(g)〉
such that ac∗(f) explicates every c-AO-morphism f and ac-modularization of the aspectual structure of
every c-AO-object is a trace of its universal explication.

Proof. By Proposition 9, ac(A) ∈ Ob c-AO for each c-DESC-object A, so the pair of maps ac is indeed
a functor. By Theorem 1, the functor mod ◦ cao is right adjoint to it, where cao: c-AO ↪→ AO is a full
embedding. Further, let υ be a map that sends each c-AO-object to some universal explication. Since every
trace is an epimorphism (see Proposition 3), an explication q of a c-AO-morphism f : S → R is determined
by the equality q◦υop

S = υop
R ◦mod(f) uniquely. A map that sends f to q is a morphism function of a functor
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ac∗ that is left adjoint to ac, and the family of c-AO-morphisms 〈υop
S , 1str(S)〉 : S → 〈dom υS , 1str(S)〉,

S ∈ Ob c-AO, is the unit of this adjunction. We verify that the counit of this adjunction is an identity:
for arbitrary c-DESC-object P , c-AO-object S, and c-DESC-morphism p : ac∗(S) → P , and we find
a unique c-AO-morphism r : S → 〈P, 1sig(P )〉 with ac∗(r) = p. By definition, p◦υop

S = 1P ◦mod(r). Hence
r = 〈p ◦ υop

S , sig(p)〉, and it is impossible to define the morphism r otherwise since the functor mod is
faithful (Theorem 1).

Corollary 2.1. A universal explication of an AO-model is unique up to isomorphism provided that it
exists.

Definition 14. A core AO-technology over an arbitrary formal design technology AR is a modularizable
AO-technology over AR generated by the functor ac.

For formal technologies over which not all AO-models have a universal explication, weaker approaches
to modularization of aspectual structure exist. In particular, an aspectual labeling of an arbitrary
AO-model can be represented at modular level by a partial morphism of a modular base. Recall that
a partial morphism of an object X to Y in a category C is a pair of C-morphisms with common beginning,
one of which is a monomorphism and is directed to X (it delimits a “part” of object X on which the partial
morphism is defined) and another is arbitrary and is directed to Y (it represents the action of a partial
morphism) [1, Definition 28.1(1)]. If the category C has enough pullbacks, then composition of partial
morphisms can be defined: composition of a pair of arbitrary partial morphisms m : X ← A → Y :f and
m′ : Y ← B → Z :f ′ is a partial morphism m ◦ m′′ : X ← G → Z :f ′ ◦ g, where m′′ : A ← G → B :g
are edges of pushout f ◦ m′′ = g ◦ m′ (m′′ is a monomorphism since monomorphisms are stable under
pullbacks [1, Proposition 11.18]). It can be verified directly that the class of all C-objects and the class of
all their partial morphisms with such a composition law comprise a category (an identity morphism of an
object T in it looks like 1T : T ← T → T :1T , and, more generally, every C-morphism p : T → S induces
a partial morphism 1T : T ← T → S :p, so C is included into this category as a subcategory).

Labeling of an arbitrary AO-model induces a partial c-DESC-morphism as follows. Recall that the
counit ε of the adjunction sig∗ � sig consists of monomorphisms (see the beginning of the proof of
Proposition 2). It is possible to delimit a discrete “part” in the modular base of an AO-model by the
counit and act on it by the discrete implementation of the aspectual labeling.

Definition 15. A partial modularization of an arbitrary AO-model 〈A, l : sig(A) → L〉 is the following
partial c-DESC-morphism from the modular base A to discrete implementation of the aspectual struc-
ture L:

εA : A ← sig∗
(
sig(A)

) → sig∗(L) :sig∗(l).

Obviously a partial modularization of an AO-model does not represent a refinement that produces the
modular base of the AO-model from its aspectual structure since the action of a partial modularization
might not be a trace of a refinement. Nevertheless an “approximation” of modularization of an aspectual
structure can be constructed using a colimit of a c-DESC-diagram that represents a partial modularization
(provided that it exists: an edge of a colimit of a partial morphism parallel to its action can be considered
as a universal extension of a partial morphism to all its domain). In literature, colimits of diagrams
that represent partial morphisms of certain specific kind are employed at formalizing MDE technologies
to calculate results of multistep model editing procedures [32]. In essence, a connection (in a sense
explained in Sec. 1) of the modular base with the discrete implementation of the aspectual structure
of an AO-model is constructed. By Proposition 8, for each AO-model that belongs to an aspectual
core precisely its universal explication is obtained this way. Here we show that a modularization of the
aspectual structure of every modularizable AO-model can be constructed this way since the following
weak form of Proposition 8 holds.

Proposition 10. The diagram of a partial modularization of every modularizable AO-model has a colimit
whose edge parallel to the action of the partial modularization is a modularization of the aspectual structure
of the model.
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Proof. Let am: c-DESC → m-AO be an arbitrary AO-extension, and let χ be the unit of the adjunction
am∗ � am. Choose an arbitrary modularizable AO-model S = 〈A, l : sig(A) → L〉 ∈ Ob m-AO. Recall
that str(χS) = 1L, so i ◦ int(χS) = l, where i = asp

(
am

(
am∗(S)

))
is an isomorphism (by Proposition 6).

Let u = εam∗(S)◦sig∗(i−1) and verify similarly to the proof of implication (i) =⇒ (iii) of Proposition 8 that
the equality am∗(χS) ◦ εA = u ◦ sig∗(l) (the counit equality for the modularization of aspectual structure)
determines a pushout, i.e., a colimit of the diagram of the partial modularization of AO-model S. Indeed,
an arbitrary pair of c-DESC-morphisms a : A → X ← sig∗(L) :y that satisfies the condition a ◦ εA =
y◦sig∗(l) induces a m-AO-morphism 〈a, j◦sig(y)〉 : S → am(X), where j = asp

(
am(X)

)
. By the definition

of adjunction, there exists a c-DESC-morphism q : am∗(S) → X such that am(q) ◦ χS = 〈a, j ◦ sig(y)〉.
Applying the functor am∗ to this equality we obtain q ◦ am∗(χS) = a. So

sig(q ◦ u) ◦ l = sig(q) ◦ i−1 ◦ l = sig
(
q ◦ am∗(χS)

)
= sig(a ◦ εA) = sig(y) ◦ l.

Hence q ◦ u = y since the morphism l has a right inverse and the functor sig is faithful. Since εam∗(S)

is an epimorphism we conclude that q is a colimit arrow of a diagram of the partial modularization of
modularizable AO-model S.

sig∗
(
sig(A)

) εA � A

sig∗(L)

sig∗(l)
�

sig∗(i−1)� sig∗(L)
εam∗(S)� am∗(S)

am∗(χS)
�

X

a

�q

................�y
�

Proposition 11. A modularization of the aspectual structure of every modularizable AO-model is a regular
epimorphism.

Proof. This proposition follows from Proposition 10 similarly to implication (iii) =⇒ (ii) of Proposition 8.

4. Design of Design Technologies

The category-theoretic approach developed above allows constructing formal technologies for design
of technologies that comprise the theoretical basis of MDE. Denote by CONF, SPEC, and ARCH
categories that consist of all formal configuration, specification, and design technologies, respectively, and
all their morphisms. There exist obvious “forgetful” functors desc : CONF → CAT, conf : SPEC →
CONF, and spec : ARCH → SPEC.

The functor desc : 〈c-DESC, Conf〉 �→ c-DESC is faithful and has a left adjoint desc∗ : CAT →
CONF: c-DESC �→ 〈c-DESC, ∅〉 with an identity as the adjunction unit. Hence it can be employed to
extract interfaces from formal configuration technologies. Capabilities to assemble complex configuration
technologies are determined by the class of all CONF-diagrams that are sent to preconfigurations by
the functor D(desc) which will be denoted as DSConf. The following characterization of the class of all
desc-preconfigurations holds (cf. [26, Proposition 15]).

Proposition 12. A diagram Σ: X → CAT that has a colimit is a desc-preconfiguration if and only if
each edge of its colimit σI , I ∈ ObX, preserves colimits of all Σ(I)-diagrams whose colimits are preserved
by all functors Σ(f) where f is an X-morphism with a domain I.

Proof. Consider a diagram Σ: X → CAT with a colimit whose vertex will be denoted by S and edges will
be denoted by σI : Σ(I) → S, I ∈ ObX. If the diagram Σ satisfies the condition of the proposition, then
every CONF-diagram Ξ ∈ Ddesc−1({Σ}) has a colimit with vertex

〈
S,

⋃

I∈Ob X

σI ◦ConfI
〉
, where ConfI

835



www.manaraa.com

is the class of all configurations of the technology Ξ(I), and edges σI . Conversely, assume that there exist
an X-object I and a Σ(I)-diagram Δ such that all functors Σ(f) with f ∈ MorX and dom f = I preserve
colimits of diagram Δ, but σI does not preserve them. The CONF-diagram

Θ: X → CONF

: J �→ 〈Σ(J), {Σ(f) ◦ Δ | f : I → J ∈ MorX}〉, h �→ Σ(h)

cannot have a colimit with a vertex sent to S by the functor desc and edges σI . Consequently, the functor
desc does not preserve colimits of diagram Θ, notwithstanding the fact that desc ◦ Θ = Σ.

In particular, all discrete CAT-diagrams are preconfigurations. In contrast, consider the following
example of a CAT-diagram that has a colimit but does not satisfy the condition of Proposition 12. Let
U be a category 1 → 0 ← 1′, Σ be a CAT-diagram of embeddings U ←↩ U \ {0} ↪→ U . The two-dot
discrete diagram �1� � �1′� has a colimit in U but not in a category colim(Σ).

As far as refinements of formal technologies are concerned, they shall represent processes of software
systems implementation, i.e., transitions from configuration technologies of interfaces to configuration
technologies of their implementations. An arbitrary functor sig : c-DESC → SIG can be treated as a rule
of extracting interfaces from models in a technology 〈c-DESC, Conf〉 provided that it satisfies conditions
(ii)–(v) of Definition 1. It can be considered as CONF-morphism sig : 〈c-DESC, Conf〉 → 〈SIG, sig◦Conf〉
that satisfies these conditions. Denote by r-CONF the class of all such CONF-morphisms. The formal
technology of design of configuration technologies is a quadruple

SCONF = 〈CONF, DSConf, desc, (ObCONF, r-CONF)op〉.
A technology of design of specification technologies is constructed on the basis of the technology SCONF.
Remarkably formal constructions of aspect-oriented approach are employed for this: as shown below,
a functor of extracting interfaces that enhances an arbitrary formal configuration technology to a speci-
fication technology is precisely its explicable labeling in the technology SCONF. Consequently, a core
AO-technology over SCONF is duly called the formal technology of design of specification technologies
(see Corollary 3.1 below) and denoted as SSPEC. So a category of interfaces represents an aspectual
structure of their implementations (for example, an assortment of roles that components play within sys-
tems [18]). Therefore, it is possible to reduce the costs associated with assembling complex specification
technologies by employing aspect-oriented techniques. Moreover, we will prove that the construction of an
AO-technology is, in turn, consistent with respect to the aspectual structure of technologies: if a modular
design technology is aspectually complete (in the sense that assembling of systems in it does not invade
aspectual structure), then its transformation to an AO-technology over it is a refinement. In view of this
we introduce the following concept.

Definition 16. A formal design technology AR is called aspectually complete if the class Conf is aspec-
tually closed with respect to the functor mod.

Proposition 13. A formal technology AR is aspectually complete if and only if the class of all configu-
rations of every AO-technology over AR coincides with Dmod−1(Conf).

Proof. The sufficiency of the condition directly follows from Definition 8. To prove the necessity, consider
an arbitrary functor ai that generates an AO-technology over AR. By Corollary 1.2 and Definition 7, we
have

Dint−1(AOIntint) ⊆ Dai−1(AOIntai) ⊆ Dmod−1(Conf).

Since Dint−1(sig ◦ Conf) = Dmod−1(Conf), by assumption sig ◦ Conf ⊆ AOIntint. Hence

Dmod−1(Conf) ⊆ Dai−1(AOIntai) ⊆ Dmod−1(Conf).

For example, the discrete event modeling technology SM is aspectually complete (see Corollary 4.6),
while the technology of design of configuration technologies SCONF is not (see below).
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Theorem 3. An AO-model over SCONF has an explication if and only if it is a specification technology ;
all of its explications are universal. A refinement of AO-models over SCONF has an explication if and
only if both its domain and codomain are specification technologies.

Proof. Choose an arbitrary formal specification technology SC = 〈c-DESC, Conf, sig : c-DESC → SIG〉
and let SConf = sig ◦ Conf. The morphism of formal configuration technologies sig : 〈c-DESC, Conf〉 →
〈SIG, SConf〉 ∈ r-CONF is a trace of the unique explication of the technology SC. This refinement
is invertible since the functor sig∗, which is left adjoint and right inverse to sig, preserves all colimits
[29, Sec. V.5] and thus induces a CONF-morphism sig∗ : 〈SIG, SConf〉 → 〈c-DESC, Conf〉 (hence the
technology SCONF supports tracing). By Proposition 9, an explication of the technology SC is universal.

Let 〈cm, sm〉 : SC → 〈c-DESC′, Conf ′, sig′ : c-DESC′ → SIG′〉 be a SPEC-morphism with cm ∈
r-CONF, so in particular sm ◦ sig = sig′ ◦ cm and Conf ′ = cm ◦ Conf. Consequently, there exists
a CONF-morphism sm: 〈SIG, SConf〉 → 〈SIG′, sig′ ◦ Conf ′〉. We need to verify that sm ∈ r-CONF.
Consider a functor scm = sig′ ◦ cm ∈ r-CONF. The functor scm∗ = cm∗ ◦ sig′∗ is left adjoint to it (denote
by ν the counit of this adjunction). The equality sm ◦ sig = scm implies that sm ◦ SConf = scm ◦Conf =
sig′ ◦ Conf ′.

c-DESC
sig� SIG

c-DESC′

cm
�

sig′� SIG′

sm
�

scm

�

This equality also implies that sm = scm ◦ sig∗, so the functor sm is faithful (as a composition of
faithful functors) and functor sig◦scm∗ is left adjoint to it with an identity as the adjunction unit. Indeed,
sm ◦ sig ◦ scm∗ = scm ◦ scm∗ = 1SIG′ and for an arbitrary A ∈ Ob SIG′, X ∈ Ob SIG, f : A → sm(X) there
exists a (unique since the functor sm is faithful) SIG-morphism g : sig

(
scm∗(A)

) → X that satisfies the
condition sm(g) = f : let g = sig

(
νsig∗(X) ◦ scm∗(f)

)
, whence

sm(g) = scm
(
νsig∗(X) ◦ scm∗(f)

)
= 1scm(sig∗(X)) ◦ scm

(
scm∗(f)

)
= f.

Verify that the functor sm lifts colimits of a diagram sig◦Δ for each diagram Δ ∈ Conf. If ξ is a colimit
of diagram sm ◦ (sig ◦ Δ), then there exists a colimit δ of diagram Δ such that sm ◦ sig ◦ δ = ξ since the
functor scm by its construction lifts colimits of all diagrams from the class Conf. So, by Proposition 2,
cocone sig ◦ δ is a colimit of diagram sig ◦ Δ which is sent to ξ by the functor Dsm.

Finally, consider arbitrary diagrams Δ ∈ Conf and Ξ ∈ ObDSIG such that sm ◦ (sig ◦ Δ) = sm ◦ Ξ.
We have scm ◦ Δ = scm ◦ sig∗ ◦ Ξ. Hence sig∗ ◦ Ξ ∈ Conf. Consequently, Ξ = sig ◦ sig∗ ◦ Ξ ∈ SConf.

Corollary 3.1. The core AO-technology over SCONF has SPEC as a category of models and conf as
a functor of extracting interfaces.

Corollary 3.2. Let AR = 〈c-DESC, Conf, sig, r-DESC〉 be an arbitrary formal design technology. For
each functor ai that generates an AO-technology over AR the functor mod: AO → c-DESC constructed
from its constituents induces an ARCH-morphism of AOai(AR) to AR. The technology AR is aspec-
tually complete if and only if the functor spec sends this morphism to a trace of an explicable refinement
of specification technologies.

Proof. Consider triple aoai = 〈mod, int ◦ ai∗, mod(−op)op〉. By condition (ii) of Corollary 1.1 and Defini-
tion 7, this triple is an ARCH-morphism of AOai(AR) to AR.

〈AO, Dai−1(AOIntai) AO
ai� INT, tr-AOop〉

Dmod

⊆

〈c-DESC,

mod
�

Conf, c-DESC

mod

�
sig� SIG,

int◦ai∗

�
r-DESC〉

mod(−op)op

�
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If AR is aspectually complete, then, by Theorem 1 and Proposition 13, conf
(
spec(aoai)

)∈ r-CONF,
so the SPEC-morphism spec(aoai) is a trace of a refinement in the technology SSPEC, and this refine-
ment is explicable by Theorem 3. Otherwise, mod◦Dmod−1(AOIntmod) �= Conf, so the SPEC-morphism
spec(aomod) is not a trace of a refinement.

Note that the formal technology SCONF is aspectually incomplete itself. In order to verify this, we
construct a SPEC-diagram Ξ that has a colimit in comma category desc ↓ CAT, whose vertex does not
belong to a category of AO-models over SCONF notwithstanding the fact that CONF-diagram conf ◦Ξ
is a configuration in SCONF. Consider the following categories and functors:

X = ({A, B}, {1A, r : A → A, 1B : B → B, p1, p2, q1, q2 : A → B}),
where r ◦ r = 1A, pi ◦ r = qi (i = 1, 2),

Xi = ({A, B}, {1A, r, 1B, pi, qi}) ⊆ X (i = 1, 2),

X0 = ({A, B}, {1A, r, 1B}) ⊆ X,

Y = ({A}, {1A, r}) ⊆ X0,

exi : Xi ↪→ X (i = 0, 1, 2),

jxi : X0 ↪→ Xi (i = 1, 2),
yx: Y ↪→ X0,

xy : X → Y : A �→ A, B �→ A, r �→ r, pi �→ r, qi �→ 1A (i = 1, 2),

xyi = xy ◦ exi (i = 0, 1, 2).

Every functor xyi (i = 1, 2) is faithful, and the functor jxi ◦ yx is left adjoint to it with an identity as
the adjunction unit. Denote by Ξ the following SPEC-diagram that consists of embeddings of formal
technologies.

〈jx1, xy0〉 : 〈X1, ∅, xy1〉 ←↩ conf∗
(
desc∗(X0)

)
↪→ 〈X2, ∅, xy2〉 :〈jx2, xy0〉,

r
�

A
p1�
q1

� B ←↩

r
�

A B ↪→
r
�

A
p2�
q2

� B

r
�

A

�

�

r
�

A

�

B
� r

�

A

�

�

Let dc : SPEC ↪→ desc ↓ CAT be an embedding of categories. Diagram dc ◦ Ξ has a colimit in the
category desc ↓ CAT with edges

〈ex1, 1Y 〉 : 〈X1, ∅, xy1〉 ↪→ 〈X, ∅, xy〉 ←↩ 〈X2, ∅, xy2〉 :〈ex2, 1Y 〉.
The functor xy is not faithful, so colim(dc ◦ Ξ) is not an AO-model over SCONF. Hence diagram Ξ is
not aspectually determined. At the same time, CONF-diagram conf ◦ Ξ is a configuration in SCONF.
Indeed, consider an arbitrary diagram Δ: Z → X1. If its schema is empty, then it has no colimit since
neither A nor B are initial X1-objects. If the category Z is nonempty and connected, then diagram Δ has
a colimit if and only if for every I ∈ Δ−1(A) each of the following sets consists of at most one element:

(i) Δ
(
Mor(I, J)

)
for each J ∈ Δ−1(A),

(ii)
⋃

J∈Δ−1(B)

Δ
(
Mor(I, J)

)

(if Δ(ObZ) = {A}, then colim(Δ) = A; otherwise, colim(Δ) = B provided that the condition above
holds). If the category Z is discrete and contains more than one object, then diagram Δ has a colimit if
and only if Δ(ObZ) = {B} (and colim(Δ) = B). In all cases described above, if diagram Δ has a colimit,
then the functor ex1 preserves it. Similarly, the functor ex2 preserves colimits of all X2-diagrams. By
Proposition 12, the diagram desc ◦ conf ◦ Ξ is a desc-preconfiguration as desired.
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On the basis of the results obtained above, a formal technology of design of design technologies is
constructed. Specification technologies fail to serve as interfaces for design technologies since the functor
spec : ARCH → SPEC that “forgets” a category of refinements is not faithful. Nevertheless, it has
a left adjoint

spec∗ : SPEC → ARCH

: 〈c-DESC, Conf, sig〉 �→ 〈c-DESC, Conf, sig, Iso c-DESC〉,
where the unit of this adjunction is an identity, and spec∗ ◦ conf∗ ◦ desc∗ = triv. It is reasonable
to extract interfaces from design technologies by the same means as the functor conf extracts inter-
faces from specification technologies, viz. by “forgetting” a functor of extraction of interfaces (sic!).
Therefore, an interface of a design technology is a triple 〈c-DESC, Conf, r-DESC〉 that satisfies condi-
tions (i), (vi)–(viii) of Definition 1. Such triples are called design formalisms in [28]. A morphism of
a formalism 〈c-DESC1, Conf1, r-DESC1〉 to a formalism 〈c-DESC2, Conf2, r-DESC2〉 is a pair of functors
〈cm: c-DESC1 → c-DESC2, rm: r-DESC1 → r-DESC2〉 that satisfies conditions (i), (ii), and (iv) of Def-
inition 3. Denote by FORM a category of all formalisms and all their morphisms. There exist the
following forgetful functors:

form : ARCH → FORM,

: 〈c-DESC, Conf, sig, r-DESC〉 �→ 〈c-DESC, Conf, r-DESC〉,
fconf : FORM → CONF,

: 〈c-DESC, Conf, r-DESC〉 �→ 〈c-DESC, Conf〉,
that satisfy the condition fconf ◦ form = conf ◦spec. The functor form is faithful and has a left adjoint

form∗ : FORM → ARCH,

: 〈c-DESC, Conf, r-DESC〉 �→ 〈c-DESC, Conf, 1c-DESC, r-DESC〉
with an identity as the adjunction unit (cf. construction of the functor mod∗ in the proof of Theorem 1).
Configurations of design technologies are selected from preimages of form-preconfigurations to ensure
consistency with configurations of specification technologies: consider the class of CONF-diagrams

PForm = {Δ |D(fconf)−1({Δ}) ⊆ FPConf,

D(conf)−1({Δ}) ⊆ CSConf,

D(conf ◦ spec)−1({Δ}) ⊆ PCspec},
where FPConf is the class of all form-preconfigurations, CSConf is the class of all configurations in
the technology SSPEC, PCspec is the class of all ARCH-diagrams with colimits preserved by the
functor spec. Note that the class PForm contains all discrete CONF-diagrams. Refinements of design
technologies generalize refinements of specification technologies in order to provide traceability for which
they shall be consistent with respect to discrete implementation of interfaces.

Definition 17. An ARCHop-morphism 〈cm, sm, rm〉op : AR → AR′ is called a refinement of design
technologies if it satisfies the following conditions.

(i) Pair 〈cm, sm〉 is a trace of a refinement of a specification technology spec(AR) to spec(AR′).
(ii) There exists a functor drm that is right inverse to rm and satisfies the condition drm(i) = cm∗(i)

for each i ∈ Iso codom cm.

For example, an ARCH-morphism aoai : AOai(AR) → AR constructed in the proof of Corollary 3.2
is dual to a refinement in the case where the technology AR is aspectually complete, and all refinements
in it are traceable (in particular, the discrete event modeling technology SM satisfies this condition).
Moreover, under this condition the refinement aoop

int is invertible and ARCH-morphism right inverse to
its trace is induced by an AO-extension: it looks like 〈am(−), 1SIG, am(−op)op〉 : AR → AOint(AR), where
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am is an arbitrary AO-extension of AR. Noninvertible refinements may generally be found among other
refinements of the kind aoop

ai .
Denote by r-ARCH the class of all ARCH-morphisms dual to refinements of design technologies.

A formal technology of design of design technologies is a quadruple

SARCH = 〈ARCH,D(conf ◦ spec)−1(PForm), form, (ObARCH, r-ARCH)op〉.
All refinements of design technologies are traceable as well as refinements of other kinds of technologies:
a right inverse to a form-image of an arbitrary r-ARCH-morphism 〈cm, sm, rm〉 : AR → AR′ looks like
〈cm∗, drm〉 : form(AR′) → form(AR). In addition, the technology SARCH is counified as well as
SCONF and SSPEC.

By Corollary 3.1, there exists an ARCH-morphism

〈spec, fconf , spec(−op)op〉 : SARCH → SSPEC.

In turn, Corollary 3.2 (upon any choice of the technology SCONF for AR) along with Proposition 7
implies that there exists an ARCH-morphism

〈conf ,desc, conf(−op)op〉 : SSPEC → SCONF.

This chain of ARCH-morphisms can be extended by one more step by introducing a “formal technology
of design of categories of models”: let

SCAT =
〈
CAT,desc ◦ DSConf, 1CAT,

(
ObCAT,desc(r-CONF)

)op〉
.

The quadruple SCAT is a counified formal design technology that supports tracing: the class of all
refinements in it is dual to the class of all faithful functors that have a left adjoint with an iden-
tity as the adjunction unit (which are precisely desc-labelings). There exists an ARCH-morphism
〈desc, 1CAT,desc(−op)op〉:SCONF → SCAT. The technology SCAT is constructed in such a way that
this ARCH-morphism is a trace of a refinement of a design technology induced by a universal explication
of the specification technology spec(SCONF) (see the first paragraph of the proof of Theorem 3). Thus,
configuration technologies are produced from categories of models by means of a refinement in a formal
technology of design of design technologies.

5. Technologies Induced by Labeling

Consider the process of performing the major technological procedures of MDE, viz. constructing
some domain-specific design technology. The first step is naturally the choice of language for the for-
mal representation of models of programs. The techniques of assembling complex models provided
by the language constructs (macro substitution, links resolution, recomposition, and so on) form the
morphisms of formal models that induce a category c-DESC. Once it has been built, as a next step
one may choose the class of configurations Conf and obtain the configuration technology. However,
it is more practical to move straight to the choice of the functor of extracting interface sig since the
conditions (ii) and (iii) of Definition 1 dictate its form sufficiently stringently. It shall coincide up
to isomorphism with some faithful coreflector in c-DESC (an example was given in Sec. 1 when we
considered the discrete event modeling technology SM). The class of configurations can then be de-
fined at interface level via selecting from sig-preconfigurations. The domain-specific specification tech-
nology is obtained this way. Complex technologies can be synthesized from technologies of this kind
by means of modular and aspect-oriented techniques formalized in a technology for design of spec-
ification technologies (cf. Corollary 3.1), e.g., to support several types of models at the same pro-
cess.

To obtain the design technology it remains to specify the class of refinements Mor r-DESC. As
mentioned in the Introduction, the main criterion of optimal choice of refinements is ensuring the widest
possible capabilities for traceability. Refinements shall be traceable (in particular, dual to activities of
integration), nontrivial (exceed isomorphisms), and at the same time not excessively costly in tracing. An
acceptable compromise is a requirement that refinements shall allow tracing inclusion components into
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the system, viz. integration activities that do not invade the internal structure of components and hence
can be traced “for free” [24]. Employ the semantics of traceability presented in Sec. 2. If a component X
is included into a system S (i.e., there exists an inclusion represented by a c-DESC-morphism m : X → S)
and S is further refined into a system T (i.e., there exists a traceable refinement represented by an
r-DESC-morphism r : S → T ), then X shall be included into T in such a way that composition (in the
category c-DESC) of a trace rop : T → S with the inclusion of X into T produces m.

This condition is easy to satisfy at the level of interfaces (for an arbitrary morphism m) by Definition 4:
desired inclusion of sig(X) into sig(T ) looks like s◦sig(m) where s is a morphism that satisfies the condition
sig(rop) ◦ s = 1sig(S). Hence a refinement r that provides traceability for inclusions shall allow “lifting”
each sig-morphism of sig(X) to sig(T ), whose composition with sig(rop) produces a sig-image of given
inclusion m, onto the level of models to a morphism of X to T . As we will see later (Definition 18), in
category theory this condition turns out to be a generalization of the definition of the concept of an initial
morphism.

Therefore, it is reasonable to construct well-traceable refinements starting at the level of interfaces
by fixing the class L of all valid labelings of formal models, viz. sig-images of traces. By statement (ii) of
Proposition 3, it shall consist of retractions and contain all isomorphisms. Traces of all refinements belong
to the class sig−1(L) so this class can be considered as consisting of integration activities that most heavily
invade the structure of components. Therefore, noninvasive inclusions can be defined as integration actions
that are “orthogonal” to them. In category theory there is the formal notion of orthogonality which gives
the following characterization of the class of all inclusions: any action of integration is uniquely (up to
isomorphism) factorized to an inclusion composed with a morphism that is sent to a retraction by the
functor sig. Classes of morphisms that induce factorization of such a kind are known as components of
factorization system [6] or factorization structure [1]. We will provide the exact definition below while
here we draw a classical example: a pair (Epi, Mono) in the category Set is a factorization system where
monomorphisms represent inclusion of subsets and an epimorphism labels its domain by elements of its
codomain. Orthogonality of inclusions to traces means that at the level of interfaces any activity of
integration of a component into a system is reduced to an inclusion of a result of some labeling of the
component. In other words, the impact of the environment provided by the system upon the interface of
the component consists in “coarsening,” viz. cancelling some refinement which is determined uniquely up
to isomorphism.

In order to propagate the noninvasive nature of inclusion to the discrete structure of models an
extra condition of preservation of discreteness is asserted by which only sig-discrete components may be
included into a discrete system. Recall that a c-DESC-object S is called discrete if εS is an isomorphism
where ε as usual is the counit of the adjunction sig∗ � sig. For example, in technologies over Set usually
all monomorphisms preserve discreteness in the sense stated above. In addition, in order to provide
traceability at the level of configurations the counifiedness condition is asserted. Refinements are selected
from the class sig−1(L)op by capability to trace inclusions of components. In this way, the class of
labelings L induces a formal design technology that we will concisely call an L-technology.

Following [24], we will show that technologies induced by classes of labelings “nicely” yield to as-
pect orientation. All refinements in them are invertible in the sense of Definition 4, and monomorphic
inclusions are noninvasive. The procedure of inducing such technologies can be traced along refine-
ments of specification technologies of a certain kind (it is natural with respect to an appropriate class of
SPEC-morphisms), in particular, it can be “descended” to a level of interfaces and “lifted” to a level
of AO-technologies. Therefore, the category tr-AO can be constructed as a comma category of a certain
kind, and (subject to some extra restrictions) aspectual completeness is provided. We will consider the
discrete event modeling technology SM as an indicative example of a design technology induced by a class
of labelings.
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Definition 18. Let ff : C → D be an arbitrary faithful functor, M be an arbitrary class of C-morphisms.
A C-morphism f : T → S is called M-initial if for every M-morphism m : X → S and every D-morphism
k : ff(X) → ff(T ) such that ff(f) ◦ k = ff(m) there exists a C-morphism k+ : X → T such that ff(k+) = k.

Denote by M-Init the class of all M-initial morphisms. This concept is constructed as a generaliza-
tion of the known category-theoretic concept of initial morphism [1, Definition 8.6], which is precisely
a Mor-initial morphism, i.e., M-initial for any class M. In many familiar cases, category c-DESC has
a factorization system of the kind (sig−1(Iso), Mor-Init), e.g., when the functor sig is topological [1, Ex-
ercise 21M(3)]. This fact can be generalized to M-initial morphisms as follows. Let M be an arbitrary
class of morphisms of some category. We will say that a relation M-Difip(e, f) holds between morphisms
e and f if for every commutative square f ◦ u = m ◦ e with m ∈ M there exists a unique “diagonal”
morphism d such that d ◦ e = u and f ◦ d = m.

u �

e

� m�

d

.....
.....

.....
.....�

f

�

Note that if e is an epimorphism, then it is enough to find a morphism d such that d ◦ e = u in order
to verify M-Difip(e, f). Recall that relation Difip (diagonal fill-in property), which is the same as our
Mor-Difip, is used in category theory for definition of a factorization system. Specifically, a factorization
system is a pair of classes of morphisms (E, F) such that:

(i) Iso ◦E ⊆ E;
(ii) F ◦ Iso ⊆ F;
(iii) F ◦ E = Mor;
(iv) Difip(E, F).

We enlist a few properties of an arbitrary factorization system according to [1, Chap. 14]. A (E, F)-fac-
torization of every morphism (i.e., its representation as composition f ◦ e with e ∈ E and f ∈ F) is unique
up to isomorphism. Class E is closed under composition and contains all isomorphisms. It is weakly
left cancellable in the sense that the conditions e ∈ E and e′ ◦ e ∈ E imply e′ ∈ E. It is also closed
under formation of coproducts and pushouts (provided that these exist) in the sense that a coproduct
of E-morphisms and an edge parallel to an E-morphism in a pushout belong to E. Dual statements hold
for F.

Proposition 14. Let M ⊆ Mor c-DESC. A c-DESC-morphism f is M-initial if and only if the condition
sig(e) ∈ Iso SIG implies M-Difip(e, f) for every c-DESC-morphism e.

Proof. Assume that f ∈ M-Init and sig(e) ∈ Iso SIG (so e ∈ Epi c-DESC), f ◦ u = m ◦ e for some
u ∈ Mor c-DESC and m ∈ M. We have sig(f)◦ (sig(u)◦ sig(e)−1) = sig(m). Hence, by Definition 18, there
exists a c-DESC-morphism d : codom e → dom f such that sig(d) = sig(u) ◦ sig(e)−1. Since the functor
sig is faithful, d ◦ e = u, so d is a desired diagonal.

Conversely, assume that M-Difip(sig−1(Iso SIG), f) holds for some c-DESC-morphism f : T → S.
Choose arbitrary morphisms m : X → S ∈ M and k : sig(X) → sig(T ) so that sig(f) ◦ k = sig(m). Denote
f∗ = sig∗

(
sig(f)

)
for an arbitrary c-DESC-morphism f . We have f∗ ◦ sig∗(k) = m∗. Hence

f ◦ (
εT ◦ sig∗(k)

)
= εS ◦ f∗ ◦ sig∗(k) = εS ◦ m∗ = m ◦ εX .

Since sig(εX) = 1sig(X) ∈ Iso SIG, there exists a diagonal d : X → T such that d ◦ εX = εT ◦ sig∗(k),
so sig(d) = k. Consequently, the c-DESC-morphism d can be employed as k+ from Definition 18, so
f ∈ M-Init.
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X∗ sig∗(k)� T ∗ εT � T

S∗

f∗
�m∗ �

X

εX

�
m �

d

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
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Proposition 15. Let M ⊆ Mor c-DESC. Every c-DESC-morphism with a discrete codomain is M-initial
if and only if every M-morphism with a discrete codomain has a discrete domain.

Proof. Assume that every c-DESC-morphism with a discrete codomain is M-initial. If m : X → S ∈ M
and εS ∈ Iso c-DESC, then εS ◦ m∗ : X∗ → S ∈ M-Init. So, by Proposition 14, a commutative square
(εS ◦ m∗) ◦ 1X∗ = m ◦ εX has a diagonal d such that d ◦ εX = 1X∗ . Hence εX is an isomorphism since it
is a left-invertible epimorphism [1, Proposition 7.43].

Conversely, assume that every M-morphism with a discrete codomain has a discrete domain. Choose
arbitrary morphisms f : T → S, m : X → S ∈ M, k : sig(X) → sig(T ) so that sig(f) ◦ k = sig(m) and
εS ∈ Iso c-DESC (hence εX ∈ Iso c-DESC as well). We have sig(εT ◦ sig∗(k) ◦ ε−1

X ) = k, so f ∈ M-Init.

Definition 19. A formal specification technology SC = 〈c-DESC, Conf, sig〉 is said to support L-labelings
for some class L of SIG-morphisms if the following conditions hold:

(i) every L-morphism is a retraction;
(ii) there exists a class M ⊆ Mor c-DESC such that the pair (sig−1(L), M) is a factorization system

in c-DESC and every M-morphism with a discrete codomain has a discrete domain;
(iii) the class Conf is closed under pushes by sig−1(L)-morphisms.

In this case, the quadruple SCL = 〈c-DESC, Conf, sig, (Trl L)op〉 where Trl L = (Ob c-DESC, sig−1(L) ∩
M-Init) is called a design technology over SC induced by a class of labelings L (an L-technology over SC),
M-morphisms are called SCL-inclusions.

Proposition 16. Every L-technology SCL is a counified formal design technology that supports tracing
with L as the class of all labelings and

RegMono c-DESC ⊆ Mono c-DESC ∩ Mor-Init = Mono c-DESC ∩ M
= Mono c-DESC ∩ M-Init ⊆ M ⊆ Mor-Init ⊆ M-Init.

Proof. First of all, we verify that the class M-Init is closed under composition. Choose arbitrary M-initial
morphisms f : T → R, g : R → S, M-morphism m : X → S, and SIG-morphism k : sig(X) → sig(T )
such that sig(g ◦ f) ◦ k = sig(m). Find a c-DESC-morphism k+ : X → T such that sig(k+) = k.
Since g ∈ M-Init and sig(g) ◦ (sig(f) ◦ k) = sig(m), by Definition 18, there exists a c-DESC-morphism
n : X → R such that sig(n) = sig(f) ◦ k. Consequently, sig(g ◦ n) = sig(m). Hence g ◦ n = m since the
functor sig is faithful. We will verify that n ∈ M, so that the desired c-DESC-morphism k+ exists by
Definition 18 since f ∈ M-Init. Let n = n′ ◦ e and (g ◦ n′) = n′′ ◦ e′ be (sig−1(L), M)-factorizations. So
m = g ◦ n = n′′ ◦ (e′ ◦ e) is a (sig−1(L), M)-factorization of an M-morphism. Hence e′ ◦ e ∈ Iso c-DESC.
Therefore e is left-invertible. Every left-invertible epimorphism is an isomorphism [1, Proposition 7.43];
consequently, n ∈ M ◦ Iso c-DESC = M as desired.
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Condition (ii) of Definition 19 guarantees that Iso c-DESC ⊆ sig−1(L) ∩ M. It follows that, in par-
ticular, Iso SIG = sig

(
sig∗(Iso SIG)

) ⊆ sig(Iso c-DESC) ⊆ L; consequently, sig−1(Iso SIG) ⊆ sig−1(L).
So, by the same condition (ii) of Definition 19, Difip(sig−1(Iso SIG), M) holds. Hence M ⊆ Mor-Init by
Proposition 14. Since, by the very same condition (ii) of Definition 19, the class sig−1(L) is closed un-
der composition, Trl L is indeed a subcategory of c-DESC that contains all isomorphisms. (A stronger
statement is actually proved: all c-DESC-objects and all M-initial morphisms comprise a subcategory of
c-DESC that has a factorization system (Mor Trl L, M) [24, Proposition 4].) Along with condition (iii) of
Definition 19 this implies that SCL is indeed a counified formal design technology.

Further, by condition (i) of Definition 19, for each (Trl L)-morphism t : T → S there exists a SIG-mor-
phism s such that sig(t) ◦ s = 1sig(S). Since 1S ∈ M, by Definition 18, there exists a c-DESC-morphism t+

such that t ◦ t+ = 1S . Hence SCL supports tracing.
The final part of condition (ii) of Definition 19 and Proposition 15 imply that sig∗(L) ⊆ sig−1(L) ∩

M-Init = Mor Trl L. Hence sig(Mor Trl L) ⊇ sig
(
sig∗(L)

)
= L.

It remains to verify the chain of inclusions of classes of morphisms specified in the condition of
the proposition. Since the functor sig due to having a left adjoint preserves regular monomorphisms
[29, Sec. V.5], every regular c-DESC-monomorphism is initial [1, Proposition 8.7(3)]. Further, let m : P →
Q be an arbitrary M-initial c-DESC-monomorphism, and let m = m′ ◦e be its (sig−1(L), M)-factorization.
Hence e is a monomorphism, so sig(e) ∈ Iso SIG since the functor sig due to having a left adjoint preserves
monomorphisms [29, Sec. V.5]. By Proposition 14, the commutative square m◦1P = m′◦e has a diagonal d
such that d ◦ e = 1P . Consequently, e ∈ Iso c-DESC. Hence m ∈ M. In summary, Mono c-DESC ∩
M-Init ⊆ M. Finally, the condition M ⊆ Mor-Init is verified above in the second paragraph of the
proof.

Proposition 17. In an arbitrary L-technology SCL, every sig−1(L)-morphism is a trace of a refinement
if and only if the functor sig is an equivalence of categories c-DESC and SIG.

Proof. Consider the following chain of equivalent statements:

sig is an equivalence
by the definition of equivalence of categories⇐⇒ ε ⊆ Iso c-DESC
f◦εA=εB◦f∗ for each f : A→B⇐⇒ sig−1(Iso SIG) = Iso c-DESC
consider that L⊇Iso SIG and M⊇Iso c-DESC⇐⇒ M-Difip

(
sig−1(Iso SIG), sig−1(L)

)

by Proposition 14⇐⇒ sig−1(L) ⊆ M-Init
by Definition 19⇐⇒ MorTrl L = sig−1(L).

Proposition 18. In an arbitrary L-technology SCL every refinement is a c-DESC-isomorphism if and
only if L = Iso SIG.

Proof. The necessity follows from Propositions 16 and 3. To prove the sufficiency, note that, by con-
dition (ii) of Definition 19 and Proposition 14, the condition L = Iso SIG implies M = Mor-Init. In
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turn, every initial c-DESC-morphism that is sent to an isomorphism by the functor sig is an isomorphism
itself [1, Proposition 8.14].

Theorem 4. Let SC′ = 〈c-DESC′, Conf ′, sig′ : c-DESC′ → SIG′〉 be an arbitrary formal specification
technology, 〈cm, sm〉 : SC → SC′ be a conf -trace such that the functor sm is an isomorphism of categories.
If SC supports L-labelings, then SC′ supports sm(L)-labelings and the class of all SC′

sm(L)-inclusions looks
like cm(M) ◦ Iso c-DESC′ where M is the class of all SCL-inclusions.

Proof. Let L̇ = sig′−1
(
sm(L)

)
, Ṁ = cm(M) ◦ Iso c-DESC′, ε′ be the counit of the adjunction sig′∗ �

sig′, and ζ be the counit of the adjunction cm∗ � cm. We will employ the following properties of the
SPEC-morphism 〈cm, sm〉:

(a) sm ◦ sig = sig′ ◦ cm (by condition (iii) of Definition 3);
(b) cm

(
sig−1(L)

) ⊆ L̇ (by (a) sig′
(
cm(q)

)
= sm

(
sig(q)

) ∈ sm(L) for each q ∈ sig−1(L));
(c) sig = sm−1 ◦ sig′ ◦ cm (by (a));
(d) cm∗(L̇) ⊆ sig−1(L) (by (c)

sig
(
cm∗(h)

)
= sm−1

(
sig′

(
cm

(
cm∗(h)

)))
= sm−1

(
sig′(h)

) ∈ L

for each h ∈ L̇ having that cm ◦ cm∗ = 1c-DESC′).
Verify all conditions of Definition 19 for the technology SC′ and class of SIG′-morphisms sm(L).
(i). Every functor preserves retractions. Hence sm(L) consists of retractions.
(ii). Let

Ṁ′ = {cm(m) | m ∈ M, ζcodom m = 1codom m} ◦ Iso c-DESC′

and establish the existence of a factorization system (L̇, Ṁ′) in c-DESC′. At first, verify that j ◦ g ∈ L̇ for
each j ∈ Iso c-DESC′ and g ∈ L̇. By statement (d) and condition (ii) of Definition 19,

cm∗(j ◦ g) ∈ Iso c-DESC ◦ cm∗(L̇) ⊆ Iso c-DESC ◦ sig−1(L) ⊆ sig−1(L).

Hence
j ◦ g = cm

(
cm∗(j ◦ g)

) ∈ cm
(
sig−1(L)

) ⊆ L̇
taking statement (b) into account. Further, by condition (ii) of Definition 19, for each c-DESC′-mor-
phism f there exists a (sig−1(L), M)-factorization cm∗(f) = n ◦ e that is turned by the functor cm into
an equality f = cm(n) ◦ cm(e), which, by statement (b), is an (L̇, Ṁ′)-factorization. Verify Difip(L̇, Ṁ′).
If (cm(m) ◦ i) ◦ u = v ◦ l for some m : A → B ∈ M, i ∈ Iso c-DESC′, l ∈ L̇, u, v ∈ Mor c-DESC′, then
denoting w = cm∗(i ◦ u) we have

m ◦ (ζA ◦ w) = ζB ◦ cm∗(cm(m)
) ◦ w =

(
ζB ◦ cm∗(v)

) ◦ cm∗(l).

Hence by Difip(sig−1(L), M) (condition (ii) of Definition 19) and statement (d) there exists a c-DESC-
morphism d such that d ◦ cm∗(l) = ζA ◦ w. Applying the functor cm to this equality, we obtain that
cm(d) ◦ l = i ◦ u, so i−1 ◦ cm(d) is the desired diagonal.

cm∗(u)� cm∗(i)� cm∗(cm(A)
) ζA� A

cm∗(l)

�

cm∗(v)
�

d

..............
..............

..............
..............

..............
.........�

cm∗(cm(B)
)

cm∗
(
cm(m)

)

�

ζB
� B

m

�

Verify that for each Ṁ′-morphism p : X → Y with ε′Y ∈ Iso c-DESC′ the condition ε′X ∈ Iso c-DESC′
holds. Let p = cm(r) ◦ t for some r : P → Q ∈ M and t : X → cm(P ) ∈ Iso c-DESC′ such that
ζQ = 1Q and cm(Q) = Y . Statement (c) and rules of constructing composition of adjunctions of func-
tors [29, Sec. IV.8] imply that εZ = ζZ ◦ cm∗(ε′cm(Z)

)
for each c-DESC-object Z. In particular, by

assumption, εQ = cm∗(ε′Y ) ∈ Iso c-DESC. Hence, by condition (ii) of Definition 19, εP ∈ Iso c-DESC.
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Consequently, substituting P for Z, we obtain that c-DESC-morphism cm∗(ε′cm(P )) is left-invertible. So it
is an isomorphism since it is an epimorphism (the counit ε′ consists of epimorphisms and the functor cm∗
having right adjoint preserves all colimits [29, Sec. V.5], in particular, all epimorphisms). We conclude that
ε′cm(P ) = cm

(
cm∗(ε′cm(P ))

) ∈ Iso c-DESC′. Consequently, ε′X = t−1 ◦ ε′cm(P ) ◦ cm∗(cm(t)
) ∈ Iso c-DESC′.

It remains to verify that Ṁ = Ṁ′. On the one hand, by construction, Ṁ′ ⊆ Ṁ. On the other hand,
Difip(L̇, Ṁ) holds (this condition is verified by literally the same reasoning as Difip(L̇, Ṁ′) above), so
Ṁ ⊆ Ṁ′.

(iii). Let τ ⇒ Σ be a push of an arbitrary diagram Σ ∈ Conf ′ by an arbitrary family of L̇-morphisms τ .
Consider the diagram Δ = cm∗ ◦ (τ ⇒ Σ) = cm∗(τ) ⇒ cm∗ ◦Σ. By statement (d), family cm∗(τ) consists
of sig−1(L)-morphisms, so the definition of conf -trace and the condition cm ◦ cm∗ ◦ Σ = Σ imply that
cm∗ ◦Σ ∈ Conf. It follows that Δ ∈ Conf by condition (iii) of Definition 19. So τ ⇒ Σ = cm ◦Δ ∈ Conf ′

by condition (i) of Definition 3.

Corollary 4.1. If SC supports L-labelings, then triple SSIG = 〈SIG, sig ◦ Conf, 1SIG〉 is a formal specifi-
cation technology that supports L-labelings in a way that a class Mor Trl L coincides with L and the class
of all inclusions coincides with sig(M) where M is the class of all SCL-inclusions. The functor sig induces
a refinement of the L-technology SSIGL to SCL.

Proof. By Corollary 3.1 and Proposition 7, we have SSIG = conf∗
(
conf∗∗(SC)

) ∈ ObSPEC. Theo-
rems 3 and 2 imply that the component of the unit of the adjunction conf∗∗ � conf∗ sends the for-
mal technology SC to a trace 〈sig, 1SIG〉 : SC → SSIG. Now apply Theorem 4. In particular, it was
verified in its proof that every SSIGL-inclusion looks like sig(m) ◦ i for some m : P → Q ∈ M and
i ∈ Iso SIG, at that εQ = 1Q. Hence, by condition (ii) of Definition 19, εP ∈ Iso c-DESC and we have
sig(m) ◦ i = sig

(
m ◦ εP ◦ sig∗(i)

) ∈ sig(M) having that class M is closed under composition and contains
all c-DESC-isomorphisms.

Finally, since SSIGL = 〈SIG, sig ◦ Conf, 1SIG, (Ob SIG, L)op〉, there exists an ARCH-morphism
〈sig, 1SIG, sig(−op)op〉 : SCL → SSIGL which is a trace of a refinement of design technologies (condition (ii)
of Definition 17 is provided by the choice of the functor sig∗ for drm having that Proposition 15 implies
that sig∗(L) ⊆ Mor Trl L).

Corollary 4.2. If SC supports L-labelings, then all SIG-objects and all L-morphisms comprise a subcat-
egory of SIG that contains all SIG-isomorphisms.

Proof. By Corollary 4.1.

Corollary 4.3. Let SC′ = 〈c-DESC′, Conf ′, sig′ : c-DESC′ → SIG′〉 be an arbitrary formal specification
technology, 〈cm, sm〉 : SC → SC′ be a SPEC-morphism such that cm is a desc-labeling and sm is an
isomorphism of categories. If SC supports L-labelings and SC′ supports L′-labelings, then the condition
sm(L) ⊆ L′ holds if and only if the triple 〈cm, sm, cm(−op)op〉 is an ARCH-morphism from SCL to SC′

L′.

Proof. Denote by M′ the class of all SC′
L′-inclusions. We will employ the counit ζ, the factorization system

(L̇, Ṁ) in c-DESC′, and the statements (a)–(d) that are introduced in the same way as in the proof of
Theorem 4.

First, assume that sm(L) ⊆ L′ so L̇ ⊆ sig′−1(L′) and verify that cm(f) ∈ Mor Trl L′ for an arbitrary
(Trl L)-morphism f : A → B. By statement (b) and assumption, cm(f) ∈ L̇ ⊆ sig′−1(L′). Now employ
Proposition 14 by verifying M′-Difip

(
e, cm(f)

)
for an arbitrary e ∈ sig′−1(Iso SIG′). Let cm(f)◦u = m′ ◦e

be an arbitrary commutative square with m′ ∈ M′. By assumption, Difip(L̇, m′) holds, so m′ ∈ Ṁ, i.e.,
m′ = cm(m) ◦ i for some m ∈ M and i ∈ Iso c-DESC′. Applying functor cm∗ to the square, we obtain the
equality cm∗(cm(f)

)◦cm∗(u) = cm∗(cm(m)
)◦cm∗(i)◦cm∗(e). Composing this equality with ζB from the

left and applying the counit equality f ◦ ζA = ζB ◦ cm∗(cm(f)
)
, we obtain the equality f ◦ ζA ◦ cm∗(u) =

w ◦ cm∗(i) ◦ cm∗(e), where w = ζB ◦ cm∗(cm(m)
)
. Let w = n ◦ s be a (sig−1(L), M)-factorization. By

Corollary 4.1, the equality sig(w) = sig(n) ◦ sig(s) is an
(
L, sig(M)

)
-factorization. So, by statement (c),
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we have sig(w) = sm−1
(
sig′

(
cm(ζB ◦ m)

))
= sig(m) ∈ sig(M) and obtain sig(s) ∈ Iso SIG. Finally, we

have the commutative square f ◦h = n ◦ g in c-DESC, where h = ζA ◦ cm∗(u) and g = s ◦ cm∗(i) ◦ cm∗(e).
So, by statement (c), sig(g) = sig(s) ◦ sig

(
cm∗(i)

) ◦ sm−1
(
sig′(e)

) ∈ Iso SIG. So, since f ∈ M-Init and
n ∈ M, by Proposition 14, there exists a diagonal d such that d ◦ g = h. Applying the functor cm to this
equality, we obtain d′ ◦ e = u where d′ = cm(d) ◦ cm(s) ◦ i. Hence d′ is the desired diagonal of the original
square. Consequently, cm(f) ∈ sig′−1(L′) ∩ M′-Init = Mor Trl L′.

cm∗(u)� cm∗(cm(A)
) ζA � A

cm∗(e)

� cm∗(m′)� cm∗(cm(B)
)
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�
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�
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d
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Now assume that cm(Mor Trl L) ⊆ Mor Trl L′ and verify that sm(l) ∈ L′ for an arbitrary L-morphism l.
The final part of condition (ii) of Definition 19 and Proposition 15 imply that sig∗(l) ∈ Mor Trl L, so along
with statement (a) we have sm(l) = sm

(
sig

(
sig∗(l)

))
= sig′(cm

(
sig∗

(
l)

)) ∈ L′.

Corollary 4.4. The specification technology spec(AOint

(
SCL)

)
supports L-labeling, and the L-technol-

ogy spec
(
AOint(SCL)

)
L

is a subtechnology of AOint(SCL). A morphism of AO-models over SCL is an
inclusion if and only if functors mod and str send it to inclusions (i.e., to an M-morphism and to
a sig(M)-morphism, respectively).

Proof. Construct categories AO, LAB, and tr-AO and functors il, mod, int, asp, and str from constituents
of the technology SCL as described in Sec. 2. Let MAO = {〈a, x〉 | a ∈ M, x ∈ sig(M)} ⊆ Mor AO and
verify that a pair (int−1(L), MAO) is a factorization system in category AO. Let 〈f, b〉 : 〈A, l〉 → 〈B, h〉 be
an arbitrary AO-morphism, let f = m◦ e be a (sig−1(L), M)-factorization, let b = p◦ q and

(
h◦ sig(m)

)
=

n ◦ s be
(
L, sig(M)

)
-factorizations. Since n ◦ (

s ◦ sig(e)
)

= h ◦ sig(m ◦ e) = h ◦ sig(f) = b ◦ l = p ◦ (q ◦ l) is
an

(
L, sig(M)

)
-factorization, there exists a SIG-isomorphism i such that p = n ◦ i and s ◦ sig(e) = i ◦ q ◦ l.

Hence 〈f, b〉 = 〈m, n〉 ◦ 〈e, i ◦ q〉 is an (int−1(L), MAO)-factorization with intermediate object 〈dom m, s〉.
A diagonal of an arbitrary commutative square r ◦u = v ◦w in AO with r ∈ MAO and int(w) ∈ L is a pair
〈d, d′〉, where d is a diagonal of a mod-image of the square and d′ is a diagonal of its str-image.

Assume that 〈f, b〉 ∈ Mor MAO and 〈B, h〉 is a discrete object, i.e., εB ∈ Iso c-DESC and h ∈ Iso SIG
(by the proof of Theorem 1). Since f ∈ M, we have εA ∈ Iso c-DESC. In addition, the equality(
h ◦ sig(f)

)
= b◦l determines an

(
L, sig(M)

)
-factorization of the sig(M)-morphism h◦sig(f), so l ∈ Iso SIG.

Thus, 〈A, l〉 is a discrete object as well.
It remains to verify that, if 〈f, b〉 ∈ int−1(L) ∩ MAO-Init, then f ∈ M-Init, so the category Trl L

constructed from constituents of the technology spec
(
AOint(SCL)

)
is contained in tr-AO as a subcategory,

and functor 1AO induces an embedding of the technology spec
(
AOint(SCL)

)
L

into AOint(SCL). Let
sig(f) ◦ k = sig(m) for some SIG-morphism k and M-morphism m : X → B. If

(
h ◦ sig(m)

)
= n ◦ s is an(

L, sig(M)
)
-factorization, then there exists an MAO-morphism 〈m, n〉 : 〈X, s〉 → 〈B, h〉. Hence there exists

an AO-morphism k′ : 〈X, s〉 → 〈A, l〉 such that int(k′) = k, so we can choose k+ = mod(k′) to satisfy
Definition 18 for f .

Corollary 4.5. The category tr-AO induced by the technology SCL coincides with the comma category
sigL ↓ (Ob SIG, L) where functor sigL : Trl L → (Ob SIG, L) acts as sig. Therefore, a refinement in an
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AO-technology over SCL has an explication if and only if both its domain and codomain belong to an
aspectual core.

Proof. For each tr-AO-morphism 〈t, b〉 : 〈A, l〉 → 〈B, h〉, we have b ∈ L since b ◦ l = h ◦ sig(t) ∈ L, l ∈ L,
and, by Corollary 4.1, class L is weakly left cancellable.

Further, by Propositions 16 and 9, every explication of the aspectual structure of an AO-model
in an AO-technology over SCL is universal, so an explicable refinement can take place only between
elements of an aspectual core. We verify that each of their refinements is explicable. Assume that
AO-models 〈A, l〉 and 〈B, h〉 have explications s : P → A and r : Q → B, respectively. Let q : P → Q
be an explication of the action of the tr-AO-morphism 〈t, b〉 along s and r, i.e., q ◦ sop = rop ◦ t. Since
refinement s is traceable, sig(q) = b ∈ L. We establish that q ∈ M-Init by means of Proposition 14:
find a diagonal of an arbitrary commutative square q ◦ u = m ◦ e with sig(e) ∈ Iso SIG and m ∈ M.
Let s′ be a c-DESC-morphism that is right inverse to sop. By the same Proposition 14, commutative
square (rop ◦ t) ◦ (s′ ◦ u) = (q ◦ sop) ◦ (s′ ◦ u) = m ◦ e has a diagonal d such that d ◦ e = s′ ◦ u. Hence
(sop ◦ d) ◦ e = sop ◦ s′ ◦ u = u, so sop ◦ d is the desired diagonal of the original square. Finally, we have
q ∈ MorTrl L.

u � P
s′ � A

P

sop

�

1P

�

e

�
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d
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Corollary 4.6. A technology SCL is aspectually complete if and only if every SIG-diagram from the class
str ◦Dmod−1(Conf) has a colimit.

Proof. The necessity of the stated condition follows from Definitions 16 and 7. To prove the sufficiency
in view of condition (iii) of Definition 19, it suffices to show that an arbitrary diagram Δ: X → AO
with mod ◦ Δ ∈ Conf is aspectually determined. First, we describe the construction of a colimit of the
LAB-diagram asp ◦ Δ. The functor int ◦ Δ is related to str ◦ Δ by a natural transformation β (i.e.,
a SIGX -morphism) with components βI = asp

(
Δ(I)

)
: int

(
Δ(I)

) → str
(
Δ(I)

)
, I ∈ Ob X that induces

DSIG-morphism 〈β, 1X〉 : int ◦Δ → str ◦Δ. So for every colimits ρ : int ◦Δ → �P� and υ : str ◦Δ → �Q�
there exists a colimit arrow which is a unique SIG-morphism u : P → Q such that υ ◦ 〈β, 1X〉 = �u� ◦ ρ.
It can be verified directly that Difip

({βI | I ∈ ObX}, sig(M)
)
, which holds by Corollary 4.1, implies

Difip
(
u, sig(M)

)
(a general dual statement can be found in [6]). Consequently, u ∈ L. Hence cocone

〈ρ, υ〉 : asp ◦ Δ → �u� is a colimit of the LAB-diagram asp ◦ Δ.
Choose for ρ cocone sig ◦ δ, where δ : mod ◦ Δ → �A� is a colimit of the c-DESC-diagram mod ◦ Δ

(its existence follows from condition (i) of Definition 1). Colimit υ exists by assumption, so given the
above, it can be verified directly that cocone 〈δ, υ〉 : Δ → �〈A, u〉� is a colimit of diagram Δ, i.e., the
functor 〈mod, str〉 : AO → c-DESC × SIG lifts its colimits. By Proposition 1 diagram Δ is aspectually
determined.

In order to illustrate the significance of the concept of an L-technology, we show that the discrete event
modeling technology is the only technology over the specification technology SS = spec(SM) induced by
some class of labelings. Indeed, by condition (i) of Definition 19, class of labelings L over the technology
SS shall consist of surjective maps of sets and, by Corollary 4.1, it shall be the first component of
a factorization system in the category Set. There are four factorization systems in Set [1, Example 14.2(4)]
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of which the first component consists of surjections only in the following two: (Iso, Mor) and (Epi, Mono).
Choice of the class IsoSet of all bijections of sets as L is hindered by condition (ii) of Definition 19:
the class of all bijective Pos-morphisms does not constitute the first component of any factorization
system in Pos since it is not closed under formation of pushouts (a vertex of a colimit of a Pos-diagram
{a < b} ← {a, b} → {a > b} comprised from bijections a �→ a, b �→ b is a singular set). On the contrary,
the class EpiSet of all surjective maps satisfies all conditions of Definition 19: the class of all regular
Pos-monomorphisms can be taken for M (category Pos has a factorization system (Epi, RegMono) and
a domain of every regular Pos-monomorphism with a discretely ordered codomain is discretely ordered
itself) and, in addition, class of scenario configurations CPos is closed under any pushes.

Verify that the category Trl EpiSet over the technology SS is dual to a category of scenario refinements
r-Pos. First, choose an arbitrary surjective map of partially ordered sets f : T → S such that the condition
f(y) < f(y′) is equivalent to y < y′ for each y, y′ ∈ T : all such maps comprise class Mor r-Posop (see
Sec. 1). Clearly the map f is monotonic. Choose arbitrary maps m : X → S ∈ RegMonoPos and
k : X → T such that f

(
k(x)

)
= m(x) for each x ∈ X and verify that the map k is monotonic, which

implies that f ∈ (RegMonoPos)-Init. Choose some x, x′ ∈ X that satisfy the condition x < x′. Since the
map m is injective, m(x) < m(x′); consequently, k(x) < k(x′) by the choice of the map f .

Conversely, let t : P → Q be an arbitrary surjective RegMono-initial map of partially ordered sets.
Choose some p, p′ ∈ P with t(p) < t(p′) and verify that p < p′, which implies that top ∈ Mor r-Pos.
Consider maps s : 2 → P : 0 �→ p, 1 �→ p′ and n : 2 → Q: x �→ t

(
s(x)

)
, where 2 denotes the two-element

linearly ordered set {0 < 1}. Clearly n ∈ RegMonoPos, so the map s is monotonic by the choice of the
map t. Consequently, p < p′.

With the discrete event modeling technology as an example it can be shown that restrictions asserted
on SPEC-morphism 〈cm, sm〉 : SC → SC′ in Theorem 4 in order to provide transition of its domain’s
capability to support some class of labelings to its codomain cannot be considerably weakened. Start
from the fact that the scenario specification technology SS does not support (IsoSet)-labelings. The
SPEC-morphism 〈1Pos, |−|〉 : TS → SS, where TS = conf∗

(
conf(SS)

)
is a conf -trace, but its second

component is not an isomorphism and TS supports (IsoPos)-labelings. In turn, the SPEC-morphism
〈dord, 1Set〉 : US → SS, where US = conf∗

(
conf∗∗(SS)

)
is not a conf -trace and US supports (IsoSet)-la-

belings.
Corollary 4.3 allows revealing the functorial nature of the procedure of inducing technologies by

labeling. Denote by SPL a category whose class of object consists of all pairs 〈SC, L〉, where SC is
a specification technology that supports L-labelings and a morphism of a pair 〈SC, L〉 to 〈SC′, L′〉 is every
SPEC-morphism 〈cm, sm〉 : SC → SC′ such that cm is a desc-labeling, sm is an isomorphism of categories,
and sm(L) ⊆ L′. By Corollary 4.3 there exists an embedding ispl : SPL ↪→ ARCH: 〈SC, L〉 �→ SCL.

Employing Corollary 4.4 we show that the procedure of AO-extension is natural with respect to this
embedding. We will concisely denote the specification technology spec

(
AOint(AR)

)
as s-AO(AR). Let

SPLL be a subcategory of SPL whose class of objects is the same as ObSPL, and a morphism of an object
〈SC, L〉 to 〈SC′, L′〉 is every SPL-morphism 〈cm, sm〉 : 〈SC, L〉 → 〈SC′, L′〉 that satisfies the condition
sm(L) = L′ (Theorem 4 ensures that the class of all these morphisms is nontrivial). For an arbitrary
SPLL-morphism 〈cm, sm〉, construct a functor aom: AO → AO′ that induces an SPLL-morphism

〈aom, sm〉 : 〈s-AO(SCL), L〉 → 〈s-AO(SC′
L′), L′〉.

The starting point is the fact stated in Sec. 2 that the category of AO-models AO constructed from con-
stituents of the L-technology SCL is a vertex of the limit of CAT-diagram with schema U sig : c-DESC →
SIG ← LAB :dom ◦ il, where LAB is a full subcategory of the arrow category SIG2 whose class of objects
consists of all L-morphisms. It is easy to verify that the SPLL-morphism 〈cm, sm〉 induces a natural
transformation of such diagrams, which will be denoted by ξ with components cm: c-DESC → c-DESC′,
sm: SIG → SIG′, sml : LAB → LAB′, where sml is a functor that acts as sm2 . Note that composition of
SPLL-morphisms induces composition of such natural transformations. Let aom = lim(〈ξ, 1U〉) : AO →
AO′ (the functor lim is defined by duality similarly to the functor colim that was introduced in Sec. 1).
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By the definition of limit, mod′ ◦aom = cm◦mod (hence int′ ◦aom = sig′ ◦mod′ ◦aom = sig′ ◦ cm◦mod =
sm ◦ sig ◦ mod = sm ◦ int) and asp′ ◦ aom = sml ◦ asp (hence str′ ◦ aom = codom′ ◦il′ ◦ asp′ ◦ aom =
codom′ ◦il′ ◦ sml ◦ asp = sm ◦ codom ◦ il ◦ asp = sm ◦ str). Consequently, we have

aom: AO → AO′

: 〈A, l〉 �→ 〈cm(A), sm(l)〉, 〈f, b〉 �→ 〈cm(f), sm(b)〉.
The functor aom is faithful since the right side of the equality mod′ ◦ aom = cm ◦mod consists of faithful
functors. In addition, the functor aom has left adjoint

aom∗ : AO′ → AO

: 〈A′, l′〉 �→ 〈cm∗(A′), sm−1(l′)〉, 〈f ′, b′〉 �→ 〈cm∗(f ′), sm−1(b′)〉;
the unit of this adjunction is an identity. Further, the functor aom preserves colimits of all configurations in
s-AO(SCL) since functors cm◦mod, int, and str preserve colimits of any configuration, and the functor sm
being an isomorphism of categories preserves colimits of any diagram. Verify that the functor Daom sends
configurations in s-AO(SCL) to configurations in s-AO(SC′

L′), i.e., that sm◦AOIntint ⊆ AOIntint′ . Choose
arbitrary diagrams Θ ∈ AOIntint and Δ ∈ Dint′−1({sm◦Θ}), let Σ = aom∗◦Δ. We have aom◦Σ = Δ and
int◦Σ = sm−1◦sm◦int◦Σ = sm−1◦int′◦Δ = Θ. Hence mod′◦Δ = mod′◦aom◦Σ = cm◦mod◦Σ ∈ Conf ′ and
also the diagram str′◦Δ = str′◦aom◦Σ = sm◦str◦Σ has a colimit. Similarly to the proof of Corollary 4.6,
we conclude that diagram Δ is aspectually determined. So is its every push by tr-AO′-morphisms. Hence
sm ◦ Θ ∈ AOIntint′ .

It follows that pair 〈aom, sm〉 is indeed an SPLL-morphism of AO-technologies. Hence, by Corol-
lary 4.3, there exists a functor

aom : SPLL → ARCH

: 〈SC, L〉 �→ AOint(SCL), 〈cm, sm〉 �→ 〈aom, sm, aom(−op)op〉.
There exists a natural transformation of this functor to a standard embedding ispl ◦ ispll : SPLL ↪→
ARCH, where ispll : SPLL ↪→ SPL is an embedding of a subcategory. This natural transformation
sends each SPLL-object 〈SC, L〉 to ARCH-morphism aoint : AOint(SCL) → SCL constructed in the proof
of Corollary 3.2. This illustrates the naturality of the AO-extension procedure for technologies induced
by labeling.

Conclusion

Software engineering technologies like MDE and AOP have great potential as a means of reducing the
cost of software systems design. It was verified in practical industrial projects that they allow replacing
dozens of programmers by small groups that create tools for automatic generation of massive source
code [27]. As a mathematical device for rigorous analysis and improvement of design processes, especially
under conditions of joint use of diverse models, it is reasonable to involve category theory. Categorical
structures reflect the key features of the technological procedures of software design, such as:

• extraction of an integration interface for a formal model of a program is represented by a functor
of a special kind, viz. a faithful coreflector;

• system configurations (“megamodels”) are found among diagrams whose colimits are determined
by an appropriate faithful coreflector;

• refinements that offer optimal tracing capabilities are selected by a certain regular procedure from
morphisms dual to those sent to retractions by a faithful coreflector.

Theoretical results of this kind are used in solving problems whose improvised ad hoc solutions’ complexity
increases with increasing scale and complexity of software systems. Such problems arise while reconciling
models of various parts and aspects of the system with each other and with source code (in particular, via
tracing), while achieving the required values of the integral system performance and other system-wide
quality indicators, and so on. Category-theoretic structures that formally describe the possible ways to
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solve the problem on an abstract conceptual level are constructed: components involved in the solution are
mapped to objects of appropriate categories, technological activities are mapped to morphisms, transitions
are mapped to functors, etc. Properties of solutions are calculated in the categories, and a solution
that delivers extremal value of the target functional (cost, reliability, etc.) is selected from alternatives.
Then the construction that corresponds to the selected solution is interpreted in terms of an appropriate
technology, and tools necessary to automate it are found or created. Examples of this approach are given
in [27].

By developing such a category-theoretic approach, in the future it will be possible to significantly
improve the level of intelligence of software engineering tools and to pass on the construction, analysis,
and optimization of design procedures to them. Modern CASE-tools are basically unable to do it; they
are capable only of mechanically executing commands issued by engineers. Employing the language of
category theory for formal machine-oriented representation of technologies and design techniques, it is
possible to reduce intellectual activity to recognition and calculation of categorical structures. Note that
this approach could lead to significant improvement in efficiency of automated design of material products
as well.

Implementation of an automatic categorical solver for algebraic specification development problems
as a part of the SPECWARE technology [35] can be considered as one of the first steps in this direction.
Creation of full-scale multi-model tools of intelligent computer-aided systems design opens up many
promising directions for future research.
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